• Title/Summary/Keyword: Dose planning

Search Result 712, Processing Time 0.025 seconds

The Effect of MLC Leaf Motion Constraints on Plan Quality and Delivery Accuracy in VMAT (체적조절호형방사선치료 시 갠트리 회전과 다엽콜리메이터의 이동 속도에 따른 선량분포 평가)

  • Kim, Yon-Lae;Chung, Jin-Beom;Lee, Jeong-woo;Shin, Young-Joo;Kang, Dong-Jin;Jung, Jae-Yong
    • Journal of radiological science and technology
    • /
    • v.42 no.3
    • /
    • pp.217-222
    • /
    • 2019
  • The purpose of this study is to evaluate the dose distribution by gantry rotation and MLC moving speed on treatment planning system(TPS) and linear accelerator. The dose analyzer phantom(Delta 4) was scanned by CT simulator for treatment planning. The planning target volumes(PTVs) of prostate and pancreas was prescribed 6,500 cGy, 5,000 cGy on VMAT(Volumetric Modulated Arc Therapy) by TPS while MLC speed changed. The analyzer phantom was irradiated linear accelerator using by planned parameters. Dose distribution of PTVs were evaluated by the homogeneity index, conformity index, dose volume histogram of organ at risk(rectum, bladder, spinal cord, kidney). And irradiated dose analysis were evaluated dose distribution and conformity by gamma index. The PTV dose of pancreas was 4,993 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(5,000 cGy). The dose of spinal cord, left kidney, and right kidney were accessed the lowest during 0.1 cm/deg, 1.5 cm/deg, 0.3 cm/deg. The PTV dose of prostate was 6,466 cGy during 0.1 cm/deg leaf and gantry that was the most closest prescribed dose(6,500 cGy). The dose of bladder and rectum were accessed the lowest during 0.3 cm/deg, 2.0 cm/deg. For gamma index, pancreas and prostate were analyzed the lowest error 100% at 0.8, 1.0 cm/deg and 99.6% at 0.3, 0.5 cm/deg. We should used the optimal leaf speed according to the gantry rotation if the treatment cases are performed VMAT.

Volumetric-Modulated Arc Radiotherapy Using Knowledge-Based Planning: Application to Spine Stereotactic Body Radiotherapy

  • Jeong, Chiyoung;Park, Jae Won;Kwak, Jungwon;Song, Si Yeol;Cho, Byungchul
    • Progress in Medical Physics
    • /
    • v.30 no.4
    • /
    • pp.94-103
    • /
    • 2019
  • Purpose: To evaluate the clinical feasibility of knowledge-based planning (KBP) for volumetric-modulated arc radiotherapy (VMAT) in spine stereotactic body radiotherapy (SBRT). Methods: Forty-eight VMAT plans for spine SBRT was studied. Two planning target volumes (PTVs) were defined for simultaneous integrated boost: PTV for boost (PTV-B: 27 Gy/3fractions) and PTV elective (PTV-E: 24 Gy/3fractions). The expert VMAT plans were manually generated by experienced planners. Twenty-six plans were used to train the KBP model using Varian RapidPlan. With the trained KBP model each KBP plan was automatically generated by an individual with little experience and compared with the expert plan (closed-loop validation). Twenty-two plans that had not been used for KBP model training were also compared with the KBP results (open-loop validation). Results: Although the minimal dose of PTV-B and PTV-E was lower and the maximal dose was higher than those of the expert plan, the difference was no larger than 0.7 Gy. In the closed-loop validation, D1.2cc, D0.35cc, and Dmean of the spinal cord was decreased by 0.9 Gy, 0.6 Gy, and 0.9 Gy, respectively, in the KBP plans (P<0.05). In the open-loop validation, only Dmean of the spinal cord was significantly decreased, by 0.5 Gy (P<0.05). Conclusions: The dose coverage and uniformity for PTV was slightly worse in the KBP for spine SBRT while the dose to the spinal cord was reduced, but the differences were small. Thus, inexperienced planners could easily generate a clinically feasible plan for spine SBRT by using KBP.

The Usability Evaluation Half Beam Radiation Treatment Technique on the Esophageal Cancer (식도암 환자에서의 Half Beam 치료법의 유용성 평가)

  • Park, Hochoon;Kim, Youngjae;Jang, Seongjoo
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.287-293
    • /
    • 2015
  • Because of esophageal cancer has the long length of the lesion and also inhomogeneous in depth. So, the radiation dose distribution was inhomogeneous in radiation therapy. To overcomes the dose distribution uniformity using half beam method. Patient's CT image was used radiation treatment planning. We used two planning methods that one is the using normal beam and another is using half beam. Than comparing the two radiotherapy planning using target coverage, dose volume histogram, conformity index, homogeneity index and normal tissues - heart, spinal cord, lung -. In results, Treatment planning using half beam is little more than normal beam in target coverage, dose volume histogram, conformity index, homogeneity index and normal tissues covering. However, If the patient is not correct position patients may arise a side effect. Thus, the using in Half beam involving the geometrically exact under lung cancer is considered to advantage.

CURRENT RESEARCH ON ACCELERATOR-BASED BORON NEUTRON CAPTURE THERAPY IN KOREA

  • Kim, Jong-Kyung;Kim, Kyung-O
    • Nuclear Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.531-544
    • /
    • 2009
  • This paper is intended to provide key issues and current research outcomes on accelerator-based Boron Neutron Capture Therapy (BNCT). Accelerator-based neutron sources are efficient to provide epithermal neutron beams for BNCT; hence, much research, worldwide, has focused on the development of components crucial for its realization: neutron-producing targets and cooling equipment, beam-shaping assemblies, and treatment planning systems. Proton beams of 2.5 MeV incident on lithium target results in high yield of neutrons at relatively low energies. Cooling equipment based on submerged jet impingement and micro-channels provide for viable heat removal options. Insofar as beam-shaping assemblies are concerned, moderators containing fluorine or magnesium have the best performance in terms of neutron accumulation in the epithermal energy range during the slowing-down from the high energies. NCT_Plan and SERA systems, which are popular dose distribution analysis tools for BNCT, contain all the required features (i.e., image reconstruction, dose calculations, etc.). However, detailed studies of these systems remain to be done for accurate dose evaluation. Advanced research centered on accelerator-based BNCT is active in Korea as evidenced by the latest research at Hanyang University. There, a new target system and a beam-shaping assembly have been constructed. The performance of these components has been evaluated through comparisons of experimental measurements with simulations. In addition, a new patient-specific treatment planning system, BTPS, has been developed to calculate the deposited dose and radiation flux in human tissue. It is based on MCNPX, and it facilitates BNCT efficient planning based via a user-friendly Graphical User Interface (GUI).

A Convenient System for Film Dosimetry Using NIH-image Software

  • Kurooka, Masahiko;Koyama, Syuji;Obata, Yasunori;Homma, Mitsuhiko;Imai, Kuniharu;Tabushi, Katsuyoshi
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.260-262
    • /
    • 2002
  • An accurate measurement of dose distribution is indispensable to perform radiation therapy planning. A measurement technique using a radiographic film, which is called a film dosimetry, is widely used because it is easy to obtain a dose distribution with a good special resolution. In this study, we tried to develop an analyzing system for the film dosimetry using usual office automation equipments such as a personal computer and an image scanner. A film was sandwiched between two solid water phantom blocks (30 ${\times}$ 30 ${\times}$ 15cm). The film was exposed with Cobalt-60 ${\gamma}$-ray whose beam axis was parallel to the film surface. The density distribution on the exposed film was stored in a personal computer through an image scanner (8bits) and the film density was shown as the digital value with NIH-image software. Isodose curves were obtained from the relationship between the digital value and the absorbed dose calculated from percentage depth dose and absorbed dose at the reference point. The isodose curves were also obtained using an Isodose plotter, for reference. The measurements were carried out for 31cGy (exposure time: 120seconds) and 80cGy (exposure time: 300seconds) at the reference point. While the isodose curves obtained with our system were drawn up to 60% dose range for the case of 80cGy, the isodose curves could be drawn up to 80% dose range for the case of 31cGy. Furthermore, the isodose curves almost agreed with that obtained with the isodose plotter in low dose range. However, further improvement of our system is necessary in high dose range.

  • PDF

Comparison between Old and New Versions of Electron Monte Carlo (eMC) Dose Calculation

  • Seongmoon Jung;Jaeman Son;Hyeongmin Jin;Seonghee Kang;Jong Min Park;Jung-in Kim;Chang Heon Choi
    • Progress in Medical Physics
    • /
    • v.34 no.2
    • /
    • pp.15-22
    • /
    • 2023
  • This study compared the dose calculated using the electron Monte Carlo (eMC) dose calculation algorithm employing the old version (eMC V13.7) of the Varian Eclipse treatment-planning system (TPS) and its newer version (eMC V16.1). The eMC V16.1 was configured using the same beam data as the eMC V13.7. Beam data measured using the VitalBeam linear accelerator were implemented. A box-shaped water phantom (30×30×30 cm3) was generated in the TPS. Consequently, the TPS with eMC V13.7 and eMC V16.1 calculated the dose to the water phantom delivered by electron beams of various energies with a field size of 10×10 cm2. The calculations were repeated while changing the dose-smoothing levels and normalization method. Subsequently, the percentage depth dose and lateral profile of the dose distributions acquired by eMC V13.7 and eMC V16.1 were analyzed. In addition, the dose-volume histogram (DVH) differences between the two versions for the heterogeneous phantom with bone and lung inserted were compared. The doses calculated using eMC V16.1 were similar to those calculated using eMC V13.7 for the homogenous phantoms. However, a DVH difference was observed in the heterogeneous phantom, particularly in the bone material. The dose distribution calculated using eMC V16.1 was comparable to that of eMC V13.7 in the case of homogenous phantoms. The version changes resulted in a different DVH for the heterogeneous phantoms. However, further investigations to assess the DVH differences in patients and experimental validations for eMC V16.1, particularly for heterogeneous geometry, are required.

Evaluations of a Commercial CLEANBOLUS-WHITE for Clinical Application

  • Geum Bong Yu;Jung-in Kim;Jaeman Son
    • Progress in Medical Physics
    • /
    • v.35 no.1
    • /
    • pp.10-15
    • /
    • 2024
  • Purpose: This study aimed to comprehensively investigate the diverse characteristics of a novel commercial bolus, CLEANBOLUS-WHITE (CBW), to ascertain its suitability for clinical application. Methods: The evaluation of CBW encompassed both physical and biological assessments. Physical parameters such as mass density and shore hardness were measured alongside analyses of element composition. Biological evaluations included assessments for skin irritation and cytotoxicity. Dosimetric properties were examined by calculating surface dose and beam quality using a treatment planning system (TPS). Additionally, doses were measured at maximum and reference depths, and the results were compared with those obtained using a solid water phantom. The effect of air gap on dose measurement was also investigated by comparing measured doses on the RANDO phantom, under the bolus, with doses calculated from the TPS. Results: Biological evaluation confirmed that CBW is non-cytotoxic, nonirritant, and non-sensitizing. The bolus exhibited a mass density of 1.02 g/cm3 and 14 shore 00. Dosimetric evaluations revealed that using the 0.5 cm CBW resulted in less than a 1% difference compared to using the solid water phantom. Furthermore, beam quality calculations in the TPS indicated increased surface dose with the bolus. The air gap effect on dose measurement was deemed negligible, with a difference of approximately 1% between calculated and measured doses, aligning with measurement uncertainty. Conclusions: CBW demonstrates outstanding properties for clinical utilization. The dosimetric evaluation underscores a strong agreement between calculated and measured doses, validating its reliability in both planning and clinical settings.

Effects of Arc Number or Rotation Range upon Dose Distribution at RapidArc Planning for Liver Cancer (간암환자를 대상으로 한 래피드아크 치료계획에서 아크수 및 회전범위가 선량분포에 미치는 영향)

  • Park, Hae-Jin;Kim, Mi-Hwa;Chun, Mi-Son;Oh, Yeong-Teak;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.21 no.2
    • /
    • pp.165-173
    • /
    • 2010
  • In this paper, we evaluated the performance of 3D CRT, IMRT and three kind of RA plannings to investigate the clinical effect of RA with liver cancer case. The patient undergoing liver cancer of small volume and somewhat constant motion were selected. We performed 3D CRT, IMRT and RA plannings such as 2RA, limited triple arcs (3RA) and 3MRA with Eclipse version 8.6.15. The same dose volume objectives were defined for only CTV, PTV and body except heart, liver and partial body in IMRT and RA plannings. The steepness of dose gradient around tumor was determined by the Normal Tissue Objective function with the same parameters in place of respective definitions of dose volume objectives for the normal organs. The approach between the defined dose constraints and the practical DVH of CTV, PTV and Body was the best in 3MRA and the worst in IMRT. The DVHs were almost the same among RAs. Plans were evaluated using Conformity Index (CI), Homogeneity Index (HI) and Quality of coverage (QoC) by RTOG after prescription with dose level surrounding 98% of PTV in the respective plans. As a result, 3MRA planning showed the better favorable indices than that of the others and achieved the lowest MUs. In this study, RA planning is a technique that is possible to obtain the faster and better dose distribution than 3D CRT or IMRT techniques. Our result suggest that 3MRA planning is able to reduce the MUs further, keeping a similar or better targer dose homogeneity, conformity and sparing normal tissue than 2RA or 3RA.

Radiotherapy Treatment Planning using Computed Tomography in Breast Cancer (유방암에서 CT planning를 이용한 치료계획)

  • 김성규;신세원;김명세
    • Progress in Medical Physics
    • /
    • v.3 no.2
    • /
    • pp.59-65
    • /
    • 1992
  • Carcimoma of the breast are first frequency malignancy in women in the world. third frequency in Korea. Radiation therapy in breast cancer were treated through opposed tangential fields with photon beam or electron beam. Density within the field and thickness to tumor are very importent factors determining dose distribution in radiation therapy of electron beam. Radiotherapy traetment planning using computed tomography in Breast cancer are able to ideal dose distribution. Authors concluded as following. 6MeV energy of electron beam propered below 1.5cm in chest wall's thickness or internal mammary lymphnode's depth. 9MeV energy of electron beam from 1.5cm to 2.0cm. 12 MeV energy of electron beam from 2.0cm to 2.5cm.

  • PDF

Intensity Modulation in Radiation Therapy (선량강도 조절법을 이용한 방사선치료)

  • 김성규;김명세
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.27-34
    • /
    • 1997
  • In radiation therapy, the goal of three dimensional conformal radiation therapy(3DCRT) is to conform the apatial distribution of the prescribed radiation dose to the precise 3D configuration of the tomor, and at the same time, to minimize the dose to the surrounding normal tissues. To optimize treatment volume of tomor, treatment volume will be same tomor volume. Biological considerations need to be incorporated in the intensity modulation optimization process. Planning of intensity modulated treatment can irradiate more 20% in tomor compare to conventional 3DCRT. In lung cancer and rectal cancer, planning of intensity modulated treatment showed optimizing dose distribution.

  • PDF