• Title/Summary/Keyword: Dose enhancement agent

Search Result 24, Processing Time 0.027 seconds

A Monte Carlo Study of Dose Enhancement with kilovoltage and megavoltage photons (몬테칼로 기법을 이용한 kV, MV X선에서의 선량증가 효과 비교 평가)

  • Hwang, ChulHwan;Im, In-Chul;Kim, Jung-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Monte Carlo simulations were used to assess dose enhancement effects for 60-, 90-, 120-, and 150-kV X-rays, and for 6- and 15-MV X-rays. The MCNPX code was used for a computer simulation of the ICRU slab phantom, and gold, gadolinium, and iron oxide (Fe2O3) were employed as dose enhancement agents. In consideration of the buildup region of the incident energy, agent concentrations of 5, 10, 15, and 20 mg/g were inserted on the surface of the phantom at a depth of 5 cm. Based on baseline values obtained in the absence of dose enhancement agents, a quantitative analysis was performed by evaluating depth-dependent changes in the absorbed energy and the dose enhancement factor (DEF). A higher concentration of dose enhancement agents led to a greater dose enhancement effect with iron oxide, gadolinium, and gold in descending order. For kilovoltage (kV) X-rays, as the incident energy was decreased and as the energy became closer to the ionization potential of the atoms in the enhancement agent, the dose enhancement effect increased. In the megavoltage (MV) X-ray range, dose enhancement was higher at 6 MV compared with 15 MV. However, the overall dose enhancements were significantly lower compared to the results obtained with kV X-rays.

A Monte Carlo Study of Dose Enhancement according to the Enhancement Agents (몬테칼로 기법을 이용한 방사선 선량증가 물질에 따른 선량증가 효과 평가)

  • Kim, Jung-Hoon;Kim, Chang-Soo;Hwang, Chulhwan
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.93-99
    • /
    • 2017
  • Dose enhancement effects at megavoltage (MV) X and ${\gamma}-ray$ energies, and the effects of different energy levels on incident energy, dose enhancement agents, and concentrations were analyzed using Monte Carlo simulations. Gold, gadolinium, Iodine, and iron oxide ($Fe_2O_3$) were compared as dose enhancement agents. For incident energy, 4, 6, 10 and 15 MV X-ray spectra produced by a linear accelerator and a Co-60 ${\gamma}-ray$ were used. The dose enhancement factor (DEF) was calculated using an ICRU Slab phantom for concentrations of 7, 18, and 30 mg/g. The DEF was higher at higher concentrations of dose enhancement agents and at lower incident energies. The calculated DEF ranged from 1.035 to 1.079, and dose enhancement effects were highest for iron oxide, followed by iodine, gadolinium, and gold. Thus, this study contributes to improving the therapeutic ratio by delivering larger doses of radiation to tumor volume, and provides data to support further in vivo and in vitro studies.

Clinical Usefulness of Contrast Echocardiography: The Dose Effect for Left Ventricle Visualization in Dogs (심초음파의 조영제의 임상적 유용성: 개에서 좌심영상화에 대한 조영제 용량의 영향)

  • Shin, Chang-ho;Hwang, Tae-sung;Yoon, Young-min;Jung, Dong-in;Yeon, Seong-chan;Lee, Hee-chun
    • Journal of Veterinary Clinics
    • /
    • v.32 no.6
    • /
    • pp.486-490
    • /
    • 2015
  • Two-demensional echocardiography is routinely used for evaluation of cardiac function. Visualization of the endocardial border is essential for the assessment of global and regional left ventricular with cardiac disease. SonoVue$^{TM}$ is a microbubble contrast agent that consists of sulfur hexafluoride-filled microbubbles in a phospholipid shell. There were many studies about contrast echocardiographic examination using SonoVue$^{TM}$ contrast agent, and various doses of SonoVue$^{TM}$ were used. To our knowledge, in published veterinary medicine, there was not reported for diagnostic efficient dose of SonoVue$^{TM}$ to evaluate contrast enhanced left ventricular endocardial border delineation (LVEBD). The purpose of this study is to compare the visualization time of LVEBD and find efficient dose of SonoVue$^{TM}$ for using various doses in dogs. Ten healthy Beagles were recruited to the study. Three different doses (0.03 ml/kg, 0.05 ml/kg and 0.1 ml/kg) of SonoVue$^{TM}$ were injected. Endocardial segments were assigned based on previously established methodology, where by the four-chamber views of the LV were divided into 6 segments. In this study, Contrast enhancement of the LVEBD after each injection was evaluated visually at the time point of overall contrast enhancement (Segmental scoring 5+) in the LV by three investigators in a blind manner. Statistical analysis was performed with SPSS version 14.0. All data were analyzed using one-way ANOVA, the multiple comparison Scheffe test. When data for the three offsite readers were combined, mean durations of useful contrast were $3.54({\pm}2.14)$, $6.15({\pm}2.61)$, and $24.39({\pm}11.10)$ seconds for the 0.03 ml/kg, 0.05 ml/kg, and 0.1 ml/kg SonoVue$^{TM}$ doses, respectively. After injection of contrast agent, there were no significant change in side effects such as urticaria, angioedema, hypersensitivity reactions, and digestive system disorders. This study suggests that efficient dose of SonoVue$^{TM}$ contrast agent for improvement of the left ventricle visualization is 0.1 ml/kg. The duration of useful enhancement of LVEBD and the reproducibility were also the highest at the 0.1 ml/kg dosage.

Influence of Intravenous Contrast Medium on Dose Calculation Using CT in Treatment Planning for Oesophageal Cancer

  • Li, Hong-Sheng;Chen, Jin-Hu;Zhang, Wei;Shang, Dong-Ping;Li, Bao-Sheng;Sun, Tao;Lin, Xiu-Tong;Yin, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1609-1614
    • /
    • 2013
  • Objective: To evaluate the effect of intravenous contrast on dose calculation in radiation treatment planning for oesophageal cancer. Methods: A total of 22 intravein-contrasted patients with oesophageal cancer were included. The Hounsfield unit (HU) value of the enhanced blood stream in thoracic great vessels and heart was overridden with 45 HU to simulate the non-contrast CT image, and 145 HU, 245 HU, 345 HU, and 445 HU to model the different contrast-enhanced scenarios. 1000 HU and -1000 HU were used to evaluate two non-physiologic extreme scenarios. Variation in dose distribution of the different scenarios was calculated to quantify the effect of contrast enhancement. Results: In the contrast-enhanced scenarios, the mean variation in dose for planning target volume (PTV) was less than 1.0%, and those for the total lung and spinal cord were less than 0.5%. When the HU value of the blood stream exceeded 245 the average variation exceeded 1.0% for the heart V40. In the non-physiologic extreme scenarios, the dose variation of PTV was less than 1.0%, while the dose calculations of the organs at risk were greater than 2.0%. Conclusions: The use of contrast agent does not significantly influence dose calculation of PTV, lung and spinal cord. However, it does have influence on dose accuracy for heart.

Delphinidin enhances radio-therapeutic effects via autophagy induction and JNK/MAPK pathway activation in non-small cell lung cancer

  • Kang, Seong Hee;Bak, Dong-Ho;Chung, Byung Yeoup;Bai, Hyoung-Woo;Kang, Bo Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.413-422
    • /
    • 2020
  • Delphinidin is a major anthocyanidin compound found in various vegetables and fruits. It has anti-oxidant, anti-inflammatory, and various other biological activities. In this study we demonstrated the anti-cancer activity of delphinidin, which was related to autophagy, in radiation-exposed non-small cell lung cancer (NSCLC). Radiosensitising effects were assessed in vitro by treating cells with a subcytotoxic dose of delphinidin (5 μM) before exposure to γ-ionising radiation (IR). We found that treatment with delphinidin or IR induced NSCLC cell death in vitro; however the combination of delphinidin pre-treatment and IR was more effective than either agent alone, yielding a radiation enhancement ratio of 1.54 at the 50% lethal dose. Moreover, combined treatment with delphinidin and IR, enhanced apoptotic cell death, suppressed the mTOR pathway, and activated the JNK/MAPK pathway. Delphinidin inhibited the phosphorylation of PI3K, AKT, and mTOR, and increased the expression of autophagy-induced cell death associated-protein in radiation-exposed NSCLC cells. In addition, JNK phosphorylation was upregulated by delphinidin pre-treatment in radiation-exposed NSCLC cells. Collectively, these results show that delphinidin acts as a radiation-sensitizing agent through autophagy induction and JNK/MAPK pathway activation, thus enhancing apoptotic cell death in NSCLC cells.

Contrast Optimization using of Weight-based Injection Protocol in Pediatric Abdomen CT Examination (소아 복부 CT 검사에서 체중에 기반한 조영제 주입 프로토콜 적용에 따른 조영증강의 최적화)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.575-584
    • /
    • 2021
  • The aim of this study was to achieve optimal portal phase while reducing contrast medium by applying weight-based dose protocol compared to standard fixed dose protocol to performing of pediatric abdominal CT examination. Discovery 750HD (General Electric Medical Systems, Milwaukee, USA) was used, and a total of 167 children consisting of 85 men and 82 women under the age of 18 were studied. The group in which the 300 mgI/ml(Xenetix, Guerbet, France) contrast medium was fixedly injected at twice body weight and the group injected with physiological saline while gradually decreasing the injection amount by 10% while applying the weight-based protocol were distinguished. Also, the CT number and SNR of abdominal organs were compared and evaluated while changing the scan delay time. Subjective image quality of enhancement and beam-hardening artifacts of around the heart was assessed with five-point criterion. The group adapted weight-based protocol with 20% reduction in contrast medium was most similar in contrast enhancement in the group with fixed injection at twice body weight. Furthermore, the group with a delay time of 20% had the highest contrast enhancement effect, and the difference in CT attenuation coefficient from the group scanned immediately after injection of the contrast media. Therefore, the appropriate delay time after injection of the contrast agent increased the contrast enhancement of the parenchymal organ. In addition, the weight-based injection protocol with normal saline reduced artifacts around the heart, and the effect of contrast enhancement could be maintained. In conclusion, it is possible to reduce dosage of contrast media through the application of weight-based injection protocols and appropriate latency, and to characterize optimal portal phase imaging on pediatric abdominal CT.

Inhibitory Effect of Bee Venom Toxin on the Growth of Cervix Cancer C33A Cells via Death Receptor Expression and Apoptosis

  • Ko, Seong Cheol;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.31 no.2
    • /
    • pp.75-85
    • /
    • 2014
  • Objectives : We investigated whether bee venom(BV) inhibit cell growth through enhancement of death receptor expressions in the human cervix cancer C33A cells. Methods : BV($1{\sim}5{\mu}g/ml$) inhibited the growth of cervix cancer C33A cells by the induction of apoptotic cell death in a dose dependent manner. Results : Consistent with apoptotic cell death, expression of Fas, death receptor(DR) 3, 4, 5 and 6 was increased concentration dependently in the cells. Moreover, Fas, DR3 and DR6 revealed more sensitivity to BV. Thus, We reconfirmed whether they actually play a critical role in anti-proliferation of cervix cancer C33A cells. Consecutively, expression of DR downstream pro-apoptotic proteins including caspase-8, -3, -9 was upregulated and Bax was concomitantly overwhelmed the expression of Bcl-2. NF-${\kappa}B$ were also inhibited by treatment with BV in C33A cells. Conclusions : These results suggest that BV could exert anti-tumor effect through induction of apoptotic cell death in human cervix cancer C33A cells via enhancement of death receptor expression, and that BV could be a promising agent for preventing and treating cervix cancer.

Inhibitory Effect of Bee Venom Toxin on Lung Cancer NCI H460 Cells Growth Through Induction of Apoptosis via Death Receptor Expressions

  • Hur, Keun Young;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.31 no.1
    • /
    • pp.121-130
    • /
    • 2014
  • Objectives : I investigated whether bee venom inhibit cell growth through enhancement of death receptor expressions in the human lung cancer cells, NCI-H460. Methods : Bee venom(1-5 ${\mu}g/ml$) inhibited the growth of NCI-H460 lung cancer cells by the induction of apoptotic cell death in a dose dependent manner. Results : Consistent with apoptotic cell death, expression of TNF-R1, TNF-R2, FAS, death receptors(DR) 3, 4, 5 and 6 was increased in the cells. Expression of DR downstream pro-apoptotic proteins including Caspase-8, -3, -9 was upregulated and Bax was concomitantly overwhelmed the expression of Bcl-2. NF-kB were inhibited by treatment with bee venom in NCI-H460 cells through TNF response change led by TNF-R1 and TNF-R2. Conclusions : These results suggest that bee venom should exert anti-tumor effect through induction of apoptotic cell death in NCI-H460 human lung cancer cells via enhancement of death receptor expression, and that bee venom could be a promising agent for preventing and treating lung cancer.

Inhibitory Effects of Bee Venom on Growth of A549 Lung Cancer Cells via Induction of Death Receptors

  • Jang, Dong Min;Song, Ho Sueb
    • Journal of Acupuncture Research
    • /
    • v.30 no.1
    • /
    • pp.57-70
    • /
    • 2013
  • This study was to investigated the effects of the bee venom on inhibition of cell growth via upregulation of death receptor expression in the A549 human lung cancer cells. Bee venom(1-5 ${\mu}g$/ml) inhibited the growth of A549 lung cancer cells by the induction of apoptotic cell death in a dose dependent manner. Consistent with apoptotic cell death, expression of TNFR1, Fas, death receptors(DR) 3, 4 and 6 was increased in the cells. Expression of DR downstream pro-apoptotic proteins including caspase-3, -9 and Bax was concomitantly increased, but the expression of Bcl-2, NF-${\kappa}B$ were inhibited by treatment with bee venom in A549 cells. Moreover, deletion of DR3, DR4 by small interfering RNA significantly reversed bee venom-induced cell growth inhibitory effect, whereas Apo3L strengthened anti-proliferative effect of bee venom through enhancement of DR3 expression. These results suggest that bee venom should exert anti-tumor effect through induction of apoptotic cell death in lung cancer cells via enhancement of death receptor expression, and that bee venom could be a promising agent for preventing and treating lung cancer.

Anti-oxidant and immune enhancement effects of Artemisia argyi H. fermented with lactic acid bacteria

  • Ji Yun Lee;Ji Hyun Kim;Ji Myung Choi;Hyemee Kim;Weon Taek Seo;Eun Ju Cho;Hyun Young Kim
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.492-502
    • /
    • 2023
  • This study investigated the antioxidant and immune enhancement activities of Artemisia argyi H. fermented by Lactobacillus plantarum. The fermented A. argyi H. ethanol extract increased scavenging activities of 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+), hydroxyl (·OH), and superoxide (O2-) radicals. Particularly, the ethanol extract of fermented A. argyi H. exhibited higher ·OH and O2- radical scavenging activities, compared with DPPH and ABTS+ radical scavenging activities. To evaluate the immune enhancement effects of the fermented A. argyi H., mice were fed a normal diet supplemented the fermented A. argyi H. at concentrations of 1%, 2%, and 5%, respectively. The supplementation of fermented A. argyi H. dose-dependently increased splenocyte proliferation. In addition, mice fed with 5% fermented A. argyi H. showed enhanced proliferation of T-cells and B-cells, along with increased levels of interferon-γ, interleukin-10, and tumor necrosis factor-α, compared to the normal group. Furthermore, mice fed with fermented A. argyi H. exhibited an increase in prominent probiotics such as Akkermansia muciniphila and Lactobacillus in gut microbiota, compared to the normal group. This study suggests that fermented A. argyi H. with Lactobacillus plantarum could be used as a dietary antioxidant and immune enhancement agent.