• Title/Summary/Keyword: Dose coefficients

Search Result 147, Processing Time 0.025 seconds

Construction of MIRD-type Korean Adult Male Phantom and Calculation of Dose Conversion Coefficients for Photon (한국 성인남성 MIRD형 모의피폭체 제작 및 광자 외부피폭 선량환산인자 산출)

  • Park, Sang-Hyun;Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.29 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • MIRD-type Korean adult male phantom, 'KMIRD' was constructed to calculate Korean-specific dosimetric quantities for radiation protection consideration. The external shape of KMIRD was based on national physical standard data of Korean. KMIRD has thicket trunk than MIRD5 and arm models divided from trunk. The height and weight of the KMIRD are 171 cm and 63.8 kg. ICRP23 data were referred to constitute organs and tissues of KMIRD. However nine organs were constructed based on Korean reference data provided by Radiation Health Research Institute. In the present study, the MCNPX2.3 Monte Carlo transport code was combined with KMIRD to calculate dose conversion coefficients for photon in the energy range from 0.05 to 10 MeV. The simulated irradiation geometries are broad parallel photon beams in AP, PA, LLAT and RLAT direction. Absorbed dose conversion coefficients were compared with data calculated with MIRD5, MIRD-type phantom based on ICRP23 reference man. In some organs, the discrepancies between two phantoms amount up to nearly 30%. The effective doses conversion coefficients of KMIRD are lower than those of MIRD5. The dose discrepancies between two MIRD-type phantoms ate because of physical differences between Korean and Western, also geometric differences between two phantoms. KMIRD should be revised using the full set of Korean reference data of all organs. The developed MIRD-type Korean adult male phantom can be applied to dose assessment of internal exposure.

Evaluation of Residential Radiation Doses from Korean Atomic Power Plants - Effect of Socioenvironmental Inputs (국내 원전주변 주민 방사선 피폭선량 평가 - 입력변수의 영향)

  • 조대철;이갑복
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.3
    • /
    • pp.223-229
    • /
    • 2003
  • Annual radiation dose of residential individuals near 4 nuclear power plants in Korea was calculated via K-DOSE 60 based on the updated ICRP-60. The critical exposure variables were chosen as radionuclides, exposed organs and intake pathways. From the calculation results, the critical nuclides were found to be $^3$H, $^{133}$ Xe, $^{60}$ Co for Kori plants and $^{14}$ C, $^{41}$ Ar for Wolsung plants. The most critical pathway was 'vegetable intake' for adults and 'milk intake' for infants. However, there was no preference in the effective organs. Sensitivity analyses showed that the chemical composition in a nuclide much more influenced upon the radiation dose than any other input parameters such as food intake, radiation discharge, and transfer/concentration coefficients by more than 10$^2$ factor. The effect of transfer/concentration coefficients on the radiation dose was negligible. All input parameters showed highly estimated correlation with the radiation dose, approxinated to 1.0.

  • PDF

Bilateral comparison of the absorbed dose to water in high energy X-ray beams between the KRISS and the NMIJ

  • Kim, In Jung;Kim, Byoung Chul;Yi, Chul-Young;Shimizu, Morihito;Morishita, Yuichiro;Saito, Norio
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1511-1516
    • /
    • 2020
  • The Korea Research Institute of Standards and Science (KRISS) established a new standard of the absorbed dose to water in LINAC X-ray beams. To confirm the equivalence of the new standard with other national metrology institutes (NMIs), a bilateral comparison study of the absorbed dose to water in high energy X-ray beams was performed between the KRISS and the National Metrology Institute of Japan (NMIJ). The comparison was made in-directly. Three transfer chambers were calibrated in the high energy X-ray beams by both laboratories and the calibration coefficients were compared. The average ratios of the calibration coefficients of the three transfer chambers obtained by the KRISS to those obtained by the NMIJ were 1.004, 1.006, 1.006, 1.007 for 6, 10, 15 and 18 MV X-ray beams, respectively. The calibration coefficients obtained at the KRISS were higher than those at the NMIJ but they were in good agreement within the expanded uncertainty of 1.0% (k = 2). The results of this study will be used as the evidence for the KRISS standard being comparable with those of other NMIs, temporarily, in the interim period up to finalizing a key comparison study, BIPM.RI(I)-K6 managed by the Consultative Committee for Ionizing Radiation.

Organ Dose Conversion Coefficients Calculated for Korean Pediatric and Adult Voxel Phantoms Exposed to External Photon Fields

  • Lee, Choonsik;Yeom, Yeon Soo;Griffin, Keith;Lee, Choonik;Lee, Ae-Kyoung;Choi, Hyung-do
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.69-75
    • /
    • 2020
  • Background: Dose conversion coefficients (DCCs) have been commonly used to estimate radiation-dose absorption by human organs based on physical measurements of fluence or kerma. The International Commission on Radiological Protection (ICRP) has reported a library of DCCs, but few studies have been conducted on their applicability to non-Caucasian populations. In the present study, we collected a total of 8 Korean pediatric and adult voxel phantoms to calculate the organ DCCs for idealized external photon-irradiation geometries. Materials and Methods: We adopted one pediatric female phantom (ETRI Child), two adult female phantoms (KORWOMAN and HDRK Female), and five adult male phantoms (KORMAN, ETRI Man, KTMAN1, KTMAN2, and HDRK Man). A general-purpose Monte Carlo radiation transport code, MCNPX2.7 (Monte Carlo N-Particle Transport extended version 2.7), was employed to calculate the DCCs for 13 major radiosensitive organs in six irradiation geometries (anteroposterior, posteroanterior, right lateral, left lateral, rotational, and isotropic) and 33 photon energy bins (0.01-20 MeV). Results and Discussion: The DCCs for major radiosensitive organs (e.g., lungs and colon) in anteroposterior geometry agreed reasonably well across the 8 Korean phantoms, whereas those for deep-seated organs (e.g., gonads) varied significantly. The DCCs of the child phantom were greater than those of the adult phantoms. A comparison with the ICRP Publication 116 data showed reasonable agreements with the Korean phantom-based data. The variations in organ DCCs were well explained using the distribution of organ depths from the phantom surface. Conclusion: A library of dose conversion coefficients for major radiosensitive organs in a series of pediatric and adult Korean voxel phantoms was established and compared with the reference data from the ICRP. This comparison showed that our Korean phantom-based data agrees reasonably with the ICRP reference data.

Conversion coefficients for the estimation of effective dose in cone-beam CT

  • Kim, Dong-Soo;Rashsuren, Oyuntugs;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.44 no.1
    • /
    • pp.21-29
    • /
    • 2014
  • Purpose: To determine the conversion coefficients (CCs) from the dose-area product (DAP) value to effective dose in cone-beam CT. Materials and Methods: A CBCT scanner with four fields of view (FOV) was used. Using two exposure settings of the adult standard and low dose exposure, DAP values were measured with a DAP meter in C mode ($200mm{\times}179mm$), P mode ($154mm{\times}154mm$), I mode ($102mm{\times}102mm$), and D mode ($51mm{\times}51mm$). The effective doses were also investigated at each mode using an adult male head and neck phantom and thermoluminescent chips. Linear regressive analysis of the DAP and effective dose values was used to calculate the CCs for each CBCT examination. Results: For the C mode, the P mode at the maxilla, and the P mode at the mandible, the CCs were 0.049 ${\mu}Sv/mGycm^2$, 0.067 ${\mu}Sv/mGycm^2$, and 0.064 ${\mu}Sv/mGycm^2$, respectively. For the I mode, the CCs at the maxilla and mandible were 0.076 ${\mu}Sv/mGycm^2$ and 0.095 ${\mu}Sv/mGycm^2$, respectively. For the D mode at the maxillary incisors, molars, and mandibular molars, the CCs were 0.038 ${\mu}Sv/mGycm^2$, 0.041 ${\mu}Sv/mGycm^2$, and 0.146 ${\mu}Sv/mGycm^2$, respectively. Conclusion: The CCs in one CBCT device with fixed 80 kV ranged from 0.038 ${\mu}Sv/mGycm^2$ to 0.146 ${\mu}Sv/mGycm^2$ according to the imaging modes and irradiated region and were highest for the D mode at the mandibular molar.

Age-Specific Thyroid Internal Dose Estimation for Koreans

  • Kwon, Tae-Eun;Yoon, Seokwon;Ha, Wi-Ho;Chung, Yoonsun;Jin, Young Woo
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.170-177
    • /
    • 2021
  • Background: The International Commission on Radiological Protection is preparing to provide reference dose coefficients for environmental radioiodine intake based on newly developed age-specific biokinetic models. However, the biokinetics of iodine has been reported to be strongly dependent on the dietary intake of stable iodine; for example, the thyroidal uptake of iodine may be substantially lower in iodine-rich regions than in iodine-deficient regions. Therefore, this study attempted to establish a system of age-specific thyroid dose estimation for South Koreans, whose daily iodine intakes are significantly higher than that of the world population. Materials and Methods: Korean age-specific biokinetic parameters and thyroid masses were derived based on the previously developed Korean adult model and the Korean anatomical reference data for adults, respectively. This study complied with the principles used in the development of age-specific biokinetic models for world population and used the ratios of baseline values for each age group relative to the value for adults to derive age-specific values. Results and Discussion: Biokinetic model predictions based on the Korean age-specific parameters showed significant differences in iodine behaviors in the body compared to those predicted using the model for the world population. In particular, the Korean age-specific thyroid dose coefficients for 129I and 131I were considerably lower than those calculated for the world population (25%-76% of the values for the world population). Conclusion: These differences stress the need for Korean-specific internal dose assessments for infants and children, which can be achieved by using the data calculated in this study.

Estimation of Effective Dose to Residents Due to Hypothetical Accidents During Dismantling of Steam Generator

  • Kyeong-Ju Lee;Chang-Lak Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.183-191
    • /
    • 2023
  • The potential impact of hypothetical accidents that occur during the immediate and deferred dismantling of the Kori Unit 1 steam generator has been comprehensively evaluated. The evaluation includes determining the inventory of radionuclides in the Steam Generator based on surface contamination measurements, assuming a rate of release for each accident scenario, and applying external and internal exposure dose coefficients to assess the effects of radionuclides on human health. The evaluation also includes calculating the atmospheric dispersion factor using the PAVAN code and analyzing three years of meteorological data from Kori NPP to determine the degree of diffusion of radionuclides in the atmosphere. Overall, the effective dose for residents living in the Exclusion Area Boundary (EAB) of Kori NPP is predicted, an it is found that the maximum level of the dose is 0.034% compared to the annual dose limit of 1 mSv for the general public. This implies that the potential impact of hypothetical accidents on human health discussed above is within acceptable limits.

A Review of Organ Dose Calculation Methods and Tools for Patients Undergoing Diagnostic Nuclear Medicine Procedures

  • Choonsik Lee
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • Exponential growth has been observed in nuclear medicine procedures worldwide in the past decades. The considerable increase is attributed to the advance of positron emission tomography and single photon emission computed tomography, as well as the introduction of new radiopharmaceuticals. Although nuclear medicine procedures provide undisputable diagnostic and therapeutic benefits to patients, the substantial increase in radiation exposure to nuclear medicine patients raises concerns about potential adverse health effects and calls for the urgent need to monitor exposure levels. In the current article, model-based internal dosimetry methods were reviewed, focusing on Medical Internal Radiation Dose (MIRD) formalism, biokinetic data, human anatomy models (stylized, voxel, and hybrid computational human phantoms), and energy spectrum data of radionuclides. Key results from many articles on nuclear medicine dosimetry and comparisons of dosimetry quantities based on different types of human anatomy models were summarized. Key characteristics of seven model-based dose calculation tools were tabulated and discussed, including dose quantities, computational human phantoms used for dose calculations, decay data for radionuclides, biokinetic data, and user interface. Lastly, future research needs in nuclear medicine dosimetry were discussed. Model-based internal dosimetry methods were reviewed focusing on MIRD formalism, biokinetic data, human anatomy models, and energy spectrum data of radionuclides. Future research should focus on updating biokinetic data, revising energy transfer quantities for alimentary and gastrointestinal tracts, accounting for body size in nuclear medicine dosimetry, and recalculating dose coefficients based on the latest biokinetic and energy transfer data.

Estimating dose-response curves using splines: a nonparametric Bayesian knot selection method

  • Lee, Jiwon;Kim, Yongku;Kim, Young Min
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.287-299
    • /
    • 2022
  • In radiation epidemiology, the excess relative risk (ERR) model is used to determine the dose-response relationship. In general, the dose-response relationship for the ERR model is assumed to be linear, linear-quadratic, linear-threshold, quadratic, and so on. However, since none of these functions dominate other functions for expressing the dose-response relationship, a Bayesian semiparametric method using splines has recently been proposed. Thus, we improve the Bayesian semiparametric method for the selection of the tuning parameters for splines as the number and location of knots using a Bayesian knot selection method. Equally spaced knots cannot capture the characteristic of radiation exposed dose distribution which is highly skewed in general. Therefore, we propose a nonparametric Bayesian knot selection method based on a Dirichlet process mixture model. Inference of the spline coefficients after obtaining the number and location of knots is performed in the Bayesian framework. We apply this approach to the life span study cohort data from the radiation effects research foundation in Japan, and the results illustrate that the proposed method provides competitive curve estimates for the dose-response curve and relatively stable credible intervals for the curve.