• Title/Summary/Keyword: Dose coefficient

Search Result 267, Processing Time 0.022 seconds

Investigation on Individual Variation of Organ Doses for Photon External Exposures: A Monte Carlo Simulation Study

  • Yumi Lee;Ji Won Choi;Lior Braunstein;Choonsik Lee;Yeon Soo Yeom
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.50-64
    • /
    • 2024
  • Background: The reference dose coefficients (DCs) of the International Commission on Radiological Protection (ICRP) have been widely used to estimate organ doses of individuals for risk assessments. This approach has been well accepted because individual anatomy data are usually unavailable, although dosimetric uncertainty exists due to the anatomical difference between the reference phantoms and the individuals. We attempted to quantify the individual variation of organ doses for photon external exposures by calculating and comparing organ DCs for 30 individuals against the ICRP reference DCs. Materials and Methods: We acquired computed tomography images from 30 patients in which eight organs (brain, breasts, liver, lungs, skeleton, skin, stomach, and urinary bladder) were segmented using the ImageJ software to create voxel phantoms. The phantoms were implemented into the Monte Carlo N-Particle 6 (MCNP6) code and then irradiated by broad parallel photon beams (10 keV to 10 MeV) at four directions (antero-posterior, postero-anterior, left-lateral, right-lateral) to calculate organ DCs. Results and Discussion: There was significant variation in organ doses due to the difference in anatomy among the individuals, especially in the kilovoltage region (e.g., <100 keV). For example, the red bone marrow doses at 0.01 MeV varied from 3 to 7 orders of the magnitude depending on the irradiation geometry. In contrast, in the megavoltage region (1-10 MeV), the individual variation of the organ doses was found to be negligibly small (differences <10%). It was also interesting to observe that the organ doses of the ICRP reference phantoms showed good agreement with the mean values of the organ doses among the patients in many cases. Conclusion: The results of this study would be informative to improve insights in individual-specific dosimetry. It should be extended to further studies in terms of many different aspects (e.g., other particles such as neutrons, other exposures such as internal exposures, and a larger number of individuals/patients) in the future.

Correlation of Effective Dose and BMI in Radioiodine($^{131}I$) Therapy (방사성옥소($^{131}I$) 치료 시 유효선량과 체질량지수의 상관관계)

  • Shin, Gyoo-Seul;Kim, Gun-Jae;Dong, Kyung-Rae;Kim, Hyun-Soo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • Purpose : The aim of this study was to predict radiation dose at 1 meter with BMI(body mass index) in thyroid cancer patients treated with radio-iodine and provide the efficient guideline in the management of patients. Methods : 140 patients from thyroidectomy for thyroid cancer were enrolled. All subjects under went 150 mCi radio-iodine therapy and performed whole body scan 1 week later. BMI(weight divided by square of height) was calculated to evaluate the amount of fatty tissue indirectly. The radiation dose at 1 meter was measured initially and on 2nd days. the relation of values with BMI were analyzed statically. As for the method of statistical analysis, using Med calc Version 9,2,2,0 Program. Results : (1) The initial effective dose was inversely correlated with the BMI. Significance level was 0.0004. (2) We obtained the following formula from the data of initial effective dose and BMI: Y = -30.91X + 350.4(${\mu}Sv/h$)(Y: initial radiation dose, x: Group). (3) After 21.55 hours, than radiation dose was less than those recommended by ICRP or NRC in 53% of the population. Conclusion : Using BMI, the initial radiation dose and 2nd days dose can be predicted in thyroid cancer patients before radio-iodine therapy. It may be used for predicting the time of discharge and control the isolation room. We were able to predict the radiation exposure after discharge using this calculated value.

  • PDF

A Performance Evaluation of Diagnostic X-ray Unit Depends on the Hospitals Size (병원 규모별 진단용 X선 발생장치의 성능 평가)

  • Park, Ju-Hun;Im, In-Chul;Dong, Kyung-Rae;Kang, Se-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • The purpose of this study is to measure the tube voltage, the tube current/volume, exposure time and exposure dose of diagnostic X-ray unit in each doctor offices, hospitals and general hospitals for evaluating the performance of such device, to learn the method and technology of its measurement and to suggest its importance. Research subjects were total 30 X-ray units and divided into groups of 10 X-ray units each. The tube voltage, the tube current/volume, exposure time and exposure dose were measured using percentage average error, and then reproducibility of exposure dose was measured through calculating coefficient of variation. The results are like followings; The tube voltage correctness examination showed that incongruent devices among total 30 X-ray units were 5 devices (16.7%). The tube current correctness examination showed that incongruent X-ray units were 3 devices (10.0%). The tube current volume correctness examination showed that incongruent X-ray units were 4 devices (13.3%). Finally, according to exposure time correctness examination, incongruent X-ray units were 5 devices (16.7%) and according to reproducibility examination of exposure dose, incongruent X-ray units were 7 devices (23.3%). Above results showed serious problem in performance management based on management regulation of diagnostic X-ray unit; it means that regular checkout and safety management are required, and as doing so, patients will be able to receive good quality of medical service by the reduction of radiation exposure time, image quality administration, unnecessary retake and etc. Therefore, this study suggests that the performance of diagnostic X-ray units should be checked regularly.

Effective Radiologic Doses and Lifetime Attributable Risks in Patients with Trauma Critical Pathway Activation (중증외상환자의 전산화단층촬영 및 중재술에 의한 방사선 유효선량 및 생애 귀속위험도)

  • Lee, Wonhyo;Kong, Taeyoung;Kim, Seunghwan;You, Je Sung;Park, Yoo Seok;Lee, Jae Gil;Chung, Sung Phil
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.198-206
    • /
    • 2013
  • Purpose: This study was performed to calculate and analyze the effective radiation doses from computed tomography (CT) and radiologic intervention in patients in the emergency department (ED) with trauma critical pathway (CP) activation and further to estimate the lifetime attributable risks (LARs) for the incidence of and mortality from cancers induced by the radiation dose. Methods: Through a retrospective electrical chart review of 104 injured patients who trauma critical pathway were activated from November 2012 to March 2013, we calculated effective radiologic doses by taking the product of the dose-linear product of the scan and the conversion coefficient. After a determination of the image results, we divided the patients into two groups, negative or positive, and calculated the effective dose for each group. With these results, we estimated the LARs for the incidence of and the mortality from cancers by using the table in the Biologic Effects of Ionizing Radiation (BEIR)-VII report. Results: A total of 76 patients were enrolled. The mean age was $49.0{\pm}8.5$ years. The mean injury severity score (ISS) was $12.7{\pm}8.4$. The cumulative effective dose (CED) for individual patients varied from 2.8 mSv to 238.8 mSv, and the mean was $47.6{\pm}39.9$ mSv. The CED in patients with an $ISS{\geq}16$($63.2{\pm}26.6$ mSv) was higher than that of patients whose ISS<16($33.5{\pm}23.1$ mSv) (p<0.001). The CED in patients who were treated with surgery or intervention($69.0{\pm}45.2$ mSv) was higher than that of patients who were treated conservatively($33.6{\pm}22.4$ mSv) (p<0.001). The LARs for cancer incidence and mortality were $328.5{\pm}308.6$ and $189.0{\pm}159.3$ per 100,000 people, respectively. Conclusion: The CED and the LAR for trauma CP-activated patients in the ED were significant, so efforts should be made to decrease the effective dose received by severely injured patients.

LiF TLD in TLD Holder for In Vivo Dosimetry (생체 내 선량측정을 위한, TLD홀더에 넣은 LiF TLD)

  • Kim Sookil;Loh John J.K.;Min Byungnim
    • Radiation Oncology Journal
    • /
    • v.19 no.3
    • /
    • pp.293-299
    • /
    • 2001
  • Prupose : LiF TLD has a problem to be used in vivo dosimetry because of the toxic property of LiF. The aim of this study is to develop new dosimeter with LiF TLD to be used in vivo dosimetry. Materials and methods : We designed and manufactured the teflon box(here after TLD holder) to put TLD in. The external size of TLD holder is $4\times4\times1\;mm^3$ To estimate the effect of TLD holder on TLD response for radiation, the linearity of TLD response to nominal dose were measured for TLD in TLD holder. Measurement were peformed in the 10 MV x-ray beam with LiF TLD using a solid water phantom at SSD of 100 cm. Percent Depth Dose (PDD) and Tissue-Maximum Ratio (TMR) with varying phantom thickness on TLD were measured to find the effect of TLD holder on the dose coefficient used for dose calculation in radiation therapy. Results : The linearity of response of TLD in TLD holder to the nominal dose was improved than TLD only used as dosimeter And in various measurement conditions, it makes a marginnal difference between TLD in TLD holder and TLD only in their responses. Conclusion : It was proven that the TLD in TLD holder as a new dosimetry could be used in vivo dosimetry.

  • PDF

Impact of Photon-Counting Detector Computed Tomography on Image Quality and Radiation Dose in Patients With Multiple Myeloma

  • Alexander Rau;Jakob Neubauer;Laetitia Taleb;Thomas Stein;Till Schuermann;Stephan Rau;Sebastian Faby;Sina Wenger;Monika Engelhardt;Fabian Bamberg;Jakob Weiss
    • Korean Journal of Radiology
    • /
    • v.24 no.10
    • /
    • pp.1006-1016
    • /
    • 2023
  • Objective: Computed tomography (CT) is an established method for the diagnosis, staging, and treatment of multiple myeloma. Here, we investigated the potential of photon-counting detector computed tomography (PCD-CT) in terms of image quality, diagnostic confidence, and radiation dose compared with energy-integrating detector CT (EID-CT). Materials and Methods: In this prospective study, patients with known multiple myeloma underwent clinically indicated whole-body PCD-CT. The image quality of PCD-CT was assessed qualitatively by three independent radiologists for overall image quality, edge sharpness, image noise, lesion conspicuity, and diagnostic confidence using a 5-point Likert scale (5 = excellent), and quantitatively for signal homogeneity using the coefficient of variation (CV) of Hounsfield Units (HU) values and modulation transfer function (MTF) via the full width at half maximum (FWHM) in the frequency space. The results were compared with those of the current clinical standard EID-CT protocols as controls. Additionally, the radiation dose (CTDIvol) was determined. Results: We enrolled 35 patients with multiple myeloma (mean age 69.8 ± 9.1 years; 18 [51%] males). Qualitative image analysis revealed superior scores (median [interquartile range]) for PCD-CT regarding overall image quality (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), edge sharpness (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), image noise (4.0 [4.0-4.0] vs. 3.0 [3.0-4.0]), lesion conspicuity (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]), and diagnostic confidence (4.0 [4.0-5.0] vs. 4.0 [3.0-4.0]) compared with EID-CT (P ≤ 0.004). In quantitative image analyses, PCD-CT compared with EID-CT revealed a substantially lower FWHM (2.89 vs. 25.68 cy/pixel) and a significantly more homogeneous signal (mean CV ± standard deviation [SD], 0.99 ± 0.65 vs. 1.66 ± 0.5; P < 0.001) at a significantly lower radiation dose (mean CTDIvol ± SD, 3.33 ± 0.82 vs. 7.19 ± 3.57 mGy; P < 0.001). Conclusion: Whole-body PCD-CT provides significantly higher subjective and objective image quality at significantly reduced radiation doses than the current clinical standard EID-CT protocols, along with readily available multi-spectral data, facilitating the potential for further advanced post-processing.

The estimation of friction coefficient by using entropy theory in open channels (엔트로피 이론에 의한 개수로 마찰계수 산정)

  • Choo, Tai Ho;Kwak, Kil Sin;Yun, Gwan Seon;Yoon, Hyeon Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2868-2875
    • /
    • 2015
  • Both the friction velocity and the friction coefficient have to be estimated to determine flow characteristic in an open channel. In spite of the importances in an open channel, the complete interpretation is highly difficult because of free water surface, the complex of cross section and the various hydraulic parameters. The researches related to the friction factor are based on empirical outcome. Therefore, the equations are difficult to be generally applied. For that reason, the new friction factor estimation equation using the entropy concept was proposed in the present study, and the data measured in rectangular and trapezoid cross sections was used to verify the accuracy of equation. The advantage of the proposed equation dose not use the energy slope term which is difficult to be measured and to be estimated in an open channel. In addition, the proposed method showed that the accurate friction factor f can be estimated on the Basis of theoretical background.

Evaluation of Photoneutron Dose for Prostate Cancer Radiation Therapy by Using Optically Stimulated Luminescence Dosimeter (OSLD) (전립선암 방사선치료 시 광자극발광선량계를 이용한 광중성자선량 평가)

  • Lee, Joo-Ah;Back, Geum-Mun;Kim, Yeon-Soo;Son, Soon-Yong;Choi, Kwan-Woo;Yoo, Beong-Gyu;Jeong, Hoi-Woun;Jung, Jae-Hong;Kim, Ki-Won;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.37 no.2
    • /
    • pp.125-134
    • /
    • 2014
  • This study is to provide basic information regarding photoneutron doses in terms of radiation treatment techniques and the number of portals in intensity-modulated radiation therapy (IMRT) by measuring the photoneutron doses. Subjects of experiment were 10 patients who were diagnosed with prostate cancer and have received radiation treatment for 5 months from September 2013 to January 2014 in the department of radiation oncology in S hospital located in Seoul. Thus, radiation treatment plans were created for 3-Dimensional Conformal Radiotherapy (3D-CRT), Volumetric-Modulated Arc Radiotherapy (VMAT), IMRT 5, 7, and 9 portals. The average difference of photoneutron dose was compared through descriptive statistics and variance analysis, and analyzed influence factors through correlation analysis and regression analysis. In summarized results, 3D-CRT showed the lowest average photoneutron dose, while IMRT caused the highest dose with statistically significance (p <.01). The photoneutron dose by number of portals of IMRT was $4.37{\pm}1.08mSv$ in average and statistically showed very significant difference among the number of portals (p <.01). Number of portals and photoneutron dose are shown that the correlation coefficient is 0.570, highly statistically significant positive correlation (p <.01). As a result of the linear regression analysis of number of portals and photoneutron dose, it showed that photoneutron dose significantly increased by 0.373 times in average as the number of portals increased by 1 stage. In conclusion, this study can be expected to be used as a quantitative basic data to select an appropriate IMRT plans regarding photoneutron dose in radiation treatment for prostate cancer.

Measurement of Effective Half-life Using Dual Time I-131 Whole Body Scan in Patients with Differentiated Thyroid Cancer Treated by High Dose Therapy (고용량 방사성옥소 치료를 받은 갑상선분화암 환자에서 Dual Time I-131 Whole Body Scan을 이용한 유효반감기의 측정)

  • Yoon, Jae Sik;Lee, Jae Gon;Lee, Ki Hyun;Lim, Kwang Seok;Choi, Hak Ki;Lee, Sang Mi
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.98-103
    • /
    • 2014
  • Purpose: The effective half life of I-131 is useful to calculate radiation dose, period of hospitalization, and exposure dose of surrounding people from patient. However, it is difficult to measure. This study estimates the effective half life in whole body and thyroid in using of value of residual radioactivity obtained from the early and delay images of Dual time I-131 whole body scan. Also, the correlations between the effective half life and serum creatinine, GFR, and administration dose were investigated in this study. Materials and Methods: The targets were 50 patients administration high dose of I-131 from February to August in 2013, having normal range of serum creatinine and over $30{\mu}IU/mL$ of TSH levels. After administration radioactive I-131, the early scan in the 3rd day and the delay scan in the 5-6th days were performed. To measure the residual radioactivity in the whole body and thyroid, ROI was set and then background radioactivity was corrected to estimate. The effective half life was estimated by calculating the ratio of measured values between the early and delay images. To compare the effective half lives of the whole body and thyroid, it was analyzed by Independent t-test, and each correlation of the effective half life, GFR, serum creatinine, and the dose of administration were analyzed by calculating the pearson's correlation coefficient. All of the analysis were determined to be statistically significant when P<0.05. Results: The effective half life of the whole body was $17.06{\pm}5.50$ hours and of the thyroid was $17.22{\pm}5.41$ hours. The two effective half life did not show significant difference (P=0.887). As the value of GFR was increased, the effective half life of whole body (r=-0.407, P=0.003) and of thyroid (r=-0.473, P=0.001) were significantly decreased; as the value of serum creatinine was increased, the effective half life of whole body (r=0.309, P=0.029) and of thyroid (r=0.371, P=0.008) were significantly increased. In the administration dose, effective half life did not have correlations. Conclusion: The effective half life of I-131 of patients treated for their thyroids were estimated only by using the images of Dual time I-131 whole body scan. Also, the correlations with the effective life, GFR, and serum creatinine were examined. This study might be utilized for a study on optimization for the period of hospitalization of patients treated by high dose of I-131 and on evaluation for internal absorbed dose of MIRD schema in application of the effective half life.

  • PDF

A Study on the Tendency of Dose value According to Dose calibrator Measurement Depth and Volume (Dose calibrator 측정 깊이와 용량의 변화에 따른 선량 값의 성향에 대한 고찰)

  • Kim, Jin Gu;Ham, Jun Cheol;Oh, Shin Hyun;Kang, Chun Koo;Kim, Jae Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.24 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Purpose It is intended to figure out the errors derived from changes in depth and volume when measuring the Standard source and 99mTc-pertechnetate by using a Dose calibrator. Then recommend appropriate measurement depth and volume. Materials and Methods As a Dose calibrator, CRC-15βeta and CRC-15R (Capintec, New Jersey, USA) was used, and the measurement sources were 57Co, 133Ba, 137Cs and 99mTc-pertechnetate was also adopted due to its high frequency of use. The Standard source was respectively measured the changes according to its depth without changing the volume, in a range of 0 cm to 15 cm from the bottom of the ion chamber. 99mTc-pertechnetate was measured at each depth by changing the volume with 0.1 mL, 0.3 mL, 0.5 mL, 0.7 mL and 0.9 mL Respectively. And the depth range was from 0 cm to 15 cm at the bottom of the ion chamber. Results In the case of Standard source 57Co, 133Ba, 137Cs and 99mTc-pertechnetate, there were significant differences according to the measurement depth(p<0.05). 99mTc-pertechnetate has a negative correlation coefficient according to the depth, and the error of the measured value was negligible at a depth from 0 cm to 7 cm at 0.3 mL and 0.5 mL, and the range of error increased as the volume increased. Conclusion In clinical practice, it is sometimes installed differently than the Standard depth recommended by the equipment company. If it's measured at the recommended depth and volume, it could be thought that unnecessary exposure of the operator and the patient will be reduced, and more accurate radiation exams will be possible in quantitative analysis.