• Title/Summary/Keyword: Dose algorithm

Search Result 261, Processing Time 0.031 seconds

An Algorithm of the Robot Control Using Image Feature Value (화상 특징량을 이용한 로봇제어 알고리즘)

  • Her, Hyeong-Pal
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.2
    • /
    • pp.48-55
    • /
    • 1999
  • To cope actively with the changes of external environments, it is necessary that a robot should have visual feedback control (VFC) using image informations. A VFC system consists of a manipulator and camera(s). For the fixed visual system, when feature value are located at the same line, we have a problem of singular value unable to be controlled by VFC. As a solution, we may define state values of the image Jacobians, then, by making comparisons and evaluations of feature values, select available ones. This method, however, has a demerit increasing numbers of feature values. To solve the problem, moving cameras of VFC system actively, we suggest an algorithm which dose not cause singular value, and prove its availability through simulations.

  • PDF

GENERAL CONVERGENCE ANALYSIS OF THE LVCMS ALGORITHM (LVCMS 알고리즘에 대한 일반적인 수렴 특성 분석)

  • Nam, Seung-Hyon;Kim, Yong-Hoh
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.63-67
    • /
    • 1996
  • Adaptive algorithms based on the higher order error criterion such as the LVCMS and the LMF show performance degradation if input signal contains additive noise with a heavier-tailed density. Conventional analysis often neglects higher order terms in the recursion and my not suit for prediction exact behavior of these higher order algorithms. This paper presents a new convergence analysis which contains all the higher order term in the recursion. The analysis shows that the higher order terms, which are often neglected, dose not affect the upper bound on the step size but the misadjustment. However, the effect decreases sharply proportional to the square of the step size.

  • PDF

Feasibility Study of CNN-based Super-Resolution Algorithm Applied to Low-Resolution CT Images

  • Doo Bin KIM;Mi Jo LEE;Joo Wan HONG
    • Korean Journal of Artificial Intelligence
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Recently, various techniques are being applied through the development of medical AI, and research has been conducted on the application of super-resolution AI models. In this study, evaluate the results of the application of the super-resolution AI model to brain CT as the basic data for future research. Acquiring CT images of the brain, algorithm for brain and bone windowing setting, and the resolution was downscaled to 5 types resolution image based on the original resolution image, and then upscaled to resolution to create an LR image and used for network input with the original imaging. The SRCNN model was applied to each of these images and analyzed using PSNR, SSIM, Loss. As a result of quantitative index analysis, the results were the best at 256×256, the brain and bone window setting PSNR were the same at 33.72, 35.2, and SSIM at 0.98 respectively, and the loss was 0.0004 and 0.0003, respectively, showing relatively excellent performance in the bone window setting CT image. The possibility of future studies aimed image quality and exposure dose is confirmed, and additional studies that need to be verified are also presented, which can be used as basic data for the above studies.

Radiation Therapy Using M3 Wax Bolus in Patients with Malignant Scalp Tumors (악성 두피 종양(Scalp) 환자의 M3 Wax Bolus를 이용한 방사선치료)

  • Kwon, Da Eun;Hwang, Ji Hye;Park, In Seo;Yang, Jun Cheol;Kim, Su Jin;You, Ah Young;Won, Young Jinn;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Helmet type bolus for 3D printer is being manufactured because of the disadvantages of Bolus materials when photon beam is used for the treatment of scalp malignancy. However, PLA, which is a used material, has a higher density than a tissue equivalent material and inconveniences occur when the patient wears PLA. In this study, we try to treat malignant scalp tumors by using M3 wax helmet with 3D printer. Methods and materials: For the modeling of the helmet type M3 wax, the head phantom was photographed by CT, which was acquired with a DICOM file. The part for helmet on the scalp was made with Helmet contour. The M3 Wax helmet was made by dissolving paraffin wax, mixing magnesium oxide and calcium carbonate, solidifying it in a PLA 3D helmet, and then eliminated PLA 3D Helmet of the surface. The treatment plan was based on Intensity-Modulated Radiation Therapy (IMRT) of 10 Portals, and the therapeutic dose was 200 cGy, using Analytical Anisotropic Algorithm (AAA) of Eclipse. Then, the dose was verified by using EBT3 film and Mosfet (Metal Oxide Semiconductor Field Effect Transistor: USA), and the IMRT plan was measured 3 times in 3 parts by reproducing the phantom of the head human model under the same condition with the CT simulation room. Results: The Hounsfield unit (HU) of the bolus measured by CT was $52{\pm}37.1$. The dose of TPS was 186.6 cGy, 193.2 cGy and 190.6 cGy at the M3 Wax bolus measurement points of A, B and C, and the dose measured three times at Mostet was $179.66{\pm}2.62cGy$, $184.33{\pm}1.24cGy$ and $195.33{\pm}1.69cGy$. And the error rates were -3.71 %, -4.59 %, and 2.48 %. The dose measured with EBT3 film was $182.00{\pm}1.63cGy$, $193.66{\pm}2.05cGy$ and $196{\pm}2.16cGy$. The error rates were -2.46 %, 0.23 % and 2.83 %. Conclusions: The thickness of the M3 wax bolus was 2 cm, which could help the treatment plan to be established by easily lowering the dose of the brain part. The maximum error rate of the scalp surface dose was measured within 5 % and generally within 3 %, even in the A, B, C measurements of dosimeters of EBT3 film and Mosfet in the treatment dose verification. The making period of M3 wax bolus is shorter, cheaper than that of 3D printer, can be reused and is very useful for the treatment of scalp malignancies as human tissue equivalent material. Therefore, we think that the use of casting type M3 wax bolus, which will complement the making period and cost of high capacity Bolus and Compensator in 3D printer, will increase later.

Inhomogeneity correction in on-line dosimetry using transmission dose (투과선량을 이용한 온라인 선량측정에서 불균질조직에 대한 선량 보정)

  • Wu, Hong-Gyun;Huh, Soon-Nyung;Lee, Hyoung-Koo;Ha, Sung-Whan
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.139-147
    • /
    • 1998
  • Purpose: Tissue inhomogeneity such as lung affects tumor dose as well as transmission dose in new concept of on-line dosimetry which estimates tumor dose from transmission dose using the new algorithm. This study was carried out to confirm accuracy of correction by tissue density in tumor dose estimation utilizing transmission dose. Methods: Cork phantom (CP, density $0.202\;gm/cm^3$) having similar density with lung parenchyme and polystyrene phantom (PP, density $1.040\;gm/cm^3$) having similar density with soft tissue were used. Dose measurement was carried out under condition simulating human chest. On simulating AP-PA irradiation, PPs with 3 cm thickness were placed above and below CP, which had thickness of 5, 10, and 20 cm. On simulating lateral irradiation, 6 cm thickness of PP was placed between two 10 cm thickness CPs additional 3 cm thick PP was placed to both lateral sides. 4, 6, and 10 MV x-ray were used. Field size was in the range of $3{\times}3$ cm through $20{\times}20$ cm, and phantom-chamber distance (PCD) was 10 to 50 cm. Above result was compared with another sets of data with equivalent thickness of PP which was corrected by density. Result: When transmission dose of PP was compared with equivalent thickness of CP which was corrected with density, the average error was 0.18 (${\pm}0.27$) % for 4 MV, 0.10 (${\pm}0.43$) % for 6 MV, and 0.33 (${\pm}0.30$) % for 10 MV with CP having thickness of 5 cm. When CP was 10 cm thick, the error was 0.23 (${\pm}0.73$) %, 0.05 (${\pm}0.57$) %, and 0.04 (${\pm}0.40$) %, while for 20 cm, error was 0.55 (${\pm}0.36$) %, 0.34 (${\pm}0.27$) %, and 0.34 (${\pm}0.18$) % for corresponding energy. With lateral irradiation model, difference was 1.15 (${\pm}1.86$) %, 0.90 (${\pm}1.43$) %, and 0.86 (${\pm}1.01$) % for corresponding energy. Relatively large difference was found in case of PCD having value of 10 cm. Omitting PCD with 10 cm, the difference was reduced to 0.47 (${\pm}$1.17) %, 0.42 (${\pm}$0.96) %, and 0.55 (${\pm}$0.77) % for corresponding energy. Conclusion When tissue inhomogeneity such as lung is in tract of x-ray beam, tumor dose could be calculated from transmission dose after correction utilizing tissue density.

  • PDF

Comparisons between the Two Dose Profiles Extracted from Leksell GammaPlan and Calculated by Variable Ellipsoid Modeling Technique (렉셀 감마플랜(LGP)에서 추출된 선량 분포와 가변 타원체 모형화기술(VEMT)에 의해 계산된 선량 분포 사이의 비교)

  • Hur, Beong Ik
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • A high degree of precision and accuracy in Gamma Knife Radiosurgery(GKRS) is a fundamental requirement for therapeutical success. Elaborate radiation delivery and dose gradients with the steep fall-off of radiation are clinically applied thus necessitating a dedicated Quality Assurance(QA) program in order to guarantee dosimetric and geometric accuracy and reduce all the risk factors that can occur in GKRS. In this study, as a part of QA we verified the accuracy of single-shot dose profiles used in the algorithm of Gamma Knife Perfexion(PFX) treatment planning system employing Variable Ellipsoid Modeling Technique(VEMT). We evaluated the dose distributions of single-shots in a spherical ABC phantom with diameter 160 mm on Gamma Knife PFX. The single-shots were directed to the center of ABC phantom. Collimating configurations of 4, 8, and 16 mm sizes along x, y, and z axes were studied. Gamma Knife PFX treatment planning system being used in GKRS is called Leksell GammaPlan(LGP) ver 10.1.1. From the verification like this, the accuracy of GKRS will be doubled. Then the clinical application must be finally performed based on precision and accuracy of GKRS. Specifically the width at the 50% isodose level, that is, Full-Width-of-Half-Maximum(FWHM) was verified under such conditions that a patient's head is simulated as a sphere with diameter 160mm. All the data about dose profiles along x, y, and z axes predicted through VEMT were excellently consistent with dose profiles from LGP within specifications(${\leq}1mm$ at 50% isodose level) except for a little difference of FWHM and PENUMBRA(isodose level: 20%~80%) along z axis for 4 mm and 8mm collimating configurations. The maximum discrepancy of FWHM was less than 2.3% at all collimating configurations. The maximum discrepancy of PENUMBRA was given for the 8 mm collimator along z axis. The difference of FWHM and PENUMBRA in the dose distributions obtained with VEMT and LGP is too small to give the clinical significance in GKRS. The results of this study are considered as a reference for medical physicists involved in GKRS in the whole world. Therefore we can work to confirm the validity of dose distributions for all collimating configurations determined through the regular preventative maintenance program using the independent verification method VEMT for the results of LGP and clinically assure the perfect treatment for patients of GKRS. Thus the use of VEMT is expected that it will be a part of QA that can verify and operate the system safely.

Raft-D: A Consensus Algorithm for Dynamic Configuration of Participant Peers (Raft-D: 참여 노드의 동적 구성을 허용하는 컨센서스 알고리즘)

  • Ha, Yeoun-Ui;Jin, Jae-Hwan;Lee, Myung-Joon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.267-277
    • /
    • 2017
  • One of fundamental problems in developing robust distributed services is how to achieve distributed consensus agreeing some data values that should be shared among participants in a distributed service. As one of algorithms for distributed consensus, Raft is known as a simple and understandable algorithm by decomposing the distributed consensus problem into three subproblems(leader election, log replication and safety). But, the algorithm dose not mention any types of dynamic configuration of participant peers such as adding new peers to a consensus group or deleting peers from the group. In this paper, we present a new consensus algorithm named Raft-D, which supports the dynamic configuration of participant peers by extending the Raft algorithm. For this, Raft-D manages the additional information maintained by participant nodes, and provides a technique to check the connection status of the nodes belonging to the consensus group. Based on the technique, Raft-D defines conditions and states to deal with adding new peers to the consensus group or deleting peers from the group. Based on those conditions and states, Raft-D performs the dynamic configuration process for a consensus group through the log update mechanism of the Raft algorithm.

Dosimetry and Three Dimensional Planning for Stereotactic Radiosurgery with SIEMENS 6-MV LINAC (6-MV선형가속기를 이용한 입체방사선수술의 선량측정 및 3차원적 치료계획)

  • Choi Dong-Rak;Cho Byong Chul;Suh Tae-Suk;Chung Su Mi;Choi Il Bong;Shinn Kyung Sub
    • Radiation Oncology Journal
    • /
    • v.11 no.1
    • /
    • pp.175-181
    • /
    • 1993
  • Radiosurgery requires integral procedure where special devices and computer systems are needed for localization, dose planning and treatment. The aim of this work is to verify the overall mechanical accuracy of our LINAC and develop dose calculation algorithm for LINAC radiosurgery. The alignment of treatment machine and the performance testing of the entire system were extensively carried out and the basic data such as percent depth dose, off-axis ratio and output factor were measured. A three dimensional treatment planning system for stereotactic radiosurgery has been developed. We used an IBM personal computer with C programming language (IBM personal system/2, Model 80386, IBM Co., USA) for calculating the dose distribution. As a result, deviations at isocenter on gantry and table rotation for our treatment machine were acceptable since they were less than 2 mm. According to the phantom experiments, the focusing isocenter were successful by the error of less than 2 mm. Finally, the mechanical accuracy of our three dimensional planning system was confirmed by film dosimetry in sphere phantom.

  • PDF

Usefulness Evaluation of HRCT using Reconstruction in Chest CT (흉부CT 검사 시 HRCT 영상 재구성의 유용성)

  • Park, Sung-Min;Kim, Keung-Sik;Kang, Seong-Min;Yoo, Beong-Gyu;Lee, Ki-Bae
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2015
  • Purpose : Skip the repetitive HRCT axial scan in order to reduce the exposure of patients during chest HRCT scan, Helical Scan Data into a reconstructed image, and exposure of the patient change and visually evaluate the usefulness of the HRCT images. Materials and method : Patients were enrolled in the survey are 50 people who underwent chest CT scans of patients who presented to the hospital from January 2015 to March 2015. 50 people surveyed 22 people men and 28 people women people showed an average distribution of 30 to 80 years age was 48 years. 50 patients to Somatom Sensation 64 ch (Siemens) model with 120 kVp tube voltage to a reference mAs tube current to mAs (Care dose, Siemens) as a whole, including the lungs and the chest CT scan was performed. Scan upon each patient CARE dose 4D (Automatic exposure control, Siemens Medical Solution Erlangen, Germany) was to maintain the proper radiation dose scan every cross-section through a device that automatically adjusts the tube current of. CT scan is the rotation time of the Tube slice collimation, slice width 0.6 mm, pitch factor was made under the terms of 1.4. CT scan obtained after the raw data (raw data) to the upper surface of the axial images and coronal images for each slice thickness 1 mm, 5 mm intervals in the high spatial frequency calculation method (hight spatial resolution algorithm, B60 sharp) was the use of the lung window center -500 HU, windows were reconstructed into images in the interval -1000 HU to see. Result : 1. Measure the total value of DLP 50 patients who proceed to chest CT group A (Helical Scan after scan performed with HRCT) and group B (Helical Scan after the HR image reconstruction to the original data) compared with the group divided, analysis As a result of the age, but show little difference for each age group it had a decreased average dose of about 9%. 2. A Radiation read the results of the two Radiologist and a doctor upper lobe and middle lobe of the lung takes effect the visual evaluation is not a big difference between the two images both, depending on the age of the patient, especially if the blood vessels of the lower lobe (A: 3.4, B: 4.6) and bronchi(A: 3.8, B4.7) image shake caused by breathing in anxiety (blurring lead) to the original data (raw data) showed that the reconstructed image is been more useful in diagnostic terms. Conclusion : Scan was confirmed a continuous, rapid motion video to get Helical scan is much lower lobe lung reduction in visual blurring, Helical scan data to not repeat the examination by obtaining HRCT images reorganization reduced the exposure of the patient.

  • PDF

The Algorithm-Oriented Management of Nasal Bone Fracture according to Stranc's Classification System

  • Park, Ki-Sung;Kim, Seung-Soo;Lee, Wu-Seop;Yang, Wan-Suk
    • Archives of Craniofacial Surgery
    • /
    • v.18 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • Background: Nasal bone fracture is one of the most common facial bone fracture types, and the surgical results exert a strong influence on the facial contour and patient satisfaction. Preventing secondary deformity and restoring the original bone state are the major goals of surgeons managing nasal bone fracture patients. In this study, a treatment algorithm was established by applying the modified open reduction technique and postoperative care for several years. Methods: This article is a retrospective chart review of 417 patients who had been received surgical treatment from 2014 to 2015. Using prepared questionnaires and visual analogue scale, several components (postoperative nasal contour; degree of pain; minor complications like dry mouth, sleep disturbance, swallowing difficulty, conversation difficulty, and headache; and degree of patient satisfaction) were evaluated. Results: The average scores for the postoperative nasal contour given by three experts, and the degree of patient satisfaction, were within the "satisfied" (4) to "very satisfied" (5) range (4.5, 4.6, 4.5, and 4.2, respectively). The postoperative degree of pain was sufficiently low that the patients needed only the minimum dose of painkiller. The scores for the minor complications (dry mouth, sleep disturbance, swallowing difficulty, conversation difficulty, headache) were relatively low (36.4, 40.8, 65.2, 32.3, and 34 out of the maximum score of 100, respectively). Conclusion: Satisfactory results were obtained through the algorithm-oriented management of nasal bone fracture. The degree of postoperative pain and minor complications were considerably low, and the degree of satisfaction with the nasal contour was high.