• Title/Summary/Keyword: Dose algorithm

Search Result 261, Processing Time 0.023 seconds

Improvement of Analytic Reconstruction Algorithms Using a Sinogram Interpolation Method for Sparse-angular Sampling with a Photon-counting Detector

  • Kim, Dohyeon;Jo, Byungdu;Park, Su-Jin;Kim, Hyemi;Kim, Hee-Joung
    • Progress in Medical Physics
    • /
    • v.27 no.3
    • /
    • pp.105-110
    • /
    • 2016
  • Sparse angular sampling has been studied recently owing to its potential to decrease the radiation exposure from computed tomography (CT). In this study, we investigated the analytic reconstruction algorithm in sparse angular sampling using the sinogram interpolation method for improving image quality and computation speed. A prototype of the spectral CT system, which has a 64-pixel Cadmium Zinc Telluride (CZT)-based photon-counting detector, was used. The source-to-detector distance and the source-to-center of rotation distance were 1,200 and 1,015 mm, respectively. Two energy bins (23~33 keV and 34~44 keV) were set to obtain two reconstruction images. We used a PMMA phantom with height and radius of 50.0 mm and 17.5 mm, respectively. The phantom contained iodine, gadolinium, calcification, and lipid. The Feld-kamp-Davis-Kress (FDK) with the sinogram interpolation method and Maximum Likelihood Expectation Maximization (MLEM) algorithm were used to reconstruct the images. We evaluated the signal-to-noise ratio (SNR) of the materials. The SNRs of iodine, calcification, and liquid lipid were increased by 167.03%, 157.93%, and 41.77%, respectively, with the 23~33 keV energy bin using the sinogram interpolation method. The SNRs of iodine, calcification, and liquid state lipid were also increased by 107.01%, 13.58%, and 27.39%, respectively, with the 34~44 keV energy bin using the sinogram interpolation method. Although the FDK algorithm with the sinogram interpolation did not produce better results than the MLEM algorithm, it did result in comparable image quality to that of the MLEM algorithm. We believe that the sinogram interpolation method can be applied in various reconstruction studies using the analytic reconstruction algorithm. Therefore, the sinogram interpolation method can improve the image quality in sparse-angular sampling and be applied to CT applications.

Application of Total Variation Algorithm in X-ray Phantom Image with Various Added Filter Thickness : GATE Simulation Study (다양한 두께의 부가 여과판을 적용한 X-선 영상에서의 Total Variation 알고리즘 적용 : GATE 시뮬레이션 연구)

  • Park, Taeil;Jang, Sujong;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.773-778
    • /
    • 2019
  • Images using X-rays are essential to diagnosis, but noise is inevitable in the image. To compensate for this, a total variation (TV) algorithm was presented to reduce the patient's exposure dose while increasing the quality of the images. The purpose of this study is to verify the effect on the image quality in radiographic imaging according to the thickness of the additional filtration plate through simulation, and to evaluate the usefulness of the TV algorithm. By using the Geant4 Application for Tomographic Emissions (GATE) simulation image, the actual size, shape and material of the Polymethylmethacrylate (PMMA) phantom were identical, the contrast to noise ratio (CNR) and coefficient of variation (COV) were compared. The results showed that the CNR value was the highest and the COV the lowest when applying the TV algorithm. In addition, we can acquire superior CNR and COV results with 0 mm Al in all algorithm cases.

Domestic Intercomparison Study for the Performance of Personnel Dosimeters (개인선량계 성능의 국내 상호비교)

  • Kim, Jang-Lyul;Chang, Si-Young;Kim, Bong-Hwan
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.3
    • /
    • pp.147-153
    • /
    • 1996
  • The Korea Atomic Energy Research Institute(KAERI) conducted a intercomparison study for personnel dosimetry services in Korea to enhance the accuracy and precision of the dosimetry system. Nine types of dosimeters(6 TLD, 3 film badge) from 7 institutions took part in this intercomparison study. Each participant submitted 30 dosimeters including transit control for irradiations. Both TLDs and film badges were irradiated with Cs-137 gamma, Sr/Y-90 beta and 4 X-ray beams in ISO wide series. Four dosimeters were irradiated on phantom with same dose equivalent for each field category. The delivered dose equivalent was in the range of $0.1{\sim}10mSv$. The participants assessed the results of their dosimeter readings in terms of the ICRU operational quantities for personal monitoring, Hp(10) and Hp(0.07). Most participants except 1 dosimeter estimated the delivered dose equivalent with biases less than ${\pm}25%$ for Cs-137 and Sr/Y-90. But for X-rays, the biases exceeded ${\pm}35%$ in some cases bacause the dose evaluation algorithm was based on the ANSI N13.11 X-ray fields which are different from those given by ISO.

  • PDF

Denoising of Digital Mammography Images Using Wavelet Transform (웨이블릿을 이용한 디지털유방영상의 노이즈 제거)

  • Choi, Seokyoon;Ko, Seongjin;Kang, Sesik
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.181-189
    • /
    • 2013
  • The optimum exposure parameters are found when examined using the automatic mode in FFDM. improve the image quality by applying denoising algorithm and propose methods to reduce AGD(Average Grandular Dose) a patient can receive. For the experiment, Nuclear Associates Model 18-222 phantom was the used, and the entrance dose and AGD were measured. And then, Signal, Noise, SNR and FOM(Figure of Merit) were measured, compared and analyzed image denoising before and after. As the experiment result, first, SNR was the highest at Mo/Mo 23kVp and W/Rh 35kvp was the lowest for the average glandular dose. It showed to use 28kVp of W/Rh to be the best through the result of FOM. SNR was the highest at Mo/Mo 23kVp(image denoising), and it showed to W/Rh and 28kVp to be the best in the FOM result which AGD was considered at the same time. By the image denoising, it is possible to reduce noise while maintain important information in the image.

Decision Algorithm of Natural Algae Coagulant Dose to Control Algae from the Influent of Water Works (정수장 유입조류 전처리를 위한 천연조류제거제(W.H.)의 최적주입농도 결정)

  • Jang, Yeo-Ju;Jung, Jin-Hong;Lim, Hyun-Man;Yoon, Young H.;Ahn, Kwang-Ho;Chang, Hyang-Youn;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.9
    • /
    • pp.482-496
    • /
    • 2016
  • Algal blooms of cyanobacteria (blue-green Algae) due to the eutrophication of rivers and lakes can cause not only the damage by its biological toxins but also the economic loss in drinking water treatment. The natural algae coagulant, a commercial product known as W.H. containing the algicidal and allelopathic material derived from oak, can control algal problems proactively through the coagulation flotation process. However, because there have been no applications of the process for pre-treatment in drinking water plants, we could find no report on the optimum injection dose of W.H.. In this study, we have conducted several sets of jar-tests while changing W.H. dose and concentration of chl-a for (1) Han-river samples and (2) subcultured cyanobacteria samples, and monitored the removal mechanisms of algae intensively. Based on these jar-test results, two linear equations with variables of chl-a and turbidity have been deduced to predict the optimal W.H. dose after the multiple regression analysis using IBM-SPSS. Also, prototypes of automatic control logic have been suggested to inject the optimal W.H. dose promptly in response to the variation of water quality.

Planning and Dosimetric Study of Volumetric Modulated Arc Based Hypofractionated Stereotactic Radiotherapy for Acoustic Schwannoma - 6MV Flattening Filter Free Photon Beam

  • Swamy, Shanmugam Thirumalai;Radha, Chandrasekaran Anu;Arun, Gandhi;Kathirvel, Murugesan;Subramanian, Sai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.12
    • /
    • pp.5019-5024
    • /
    • 2015
  • Background: The purpose of this study was to assess the dosimetric and clinical feasibility of volumetric modulated arc based hypofractionated stereotactic radiotherapy (RapidArc) treatment for large acoustic schwannoma (AS >10cc). Materials and Methods: Ten AS patients were immobilized using BrainLab mask. They were subject to multimodality imaging (magnetic resonance and computed tomography) to contour target and organs at risk (brainstem and cochlea). Volumetric modulated arc therapy (VMAT) based stereotactic plans were optimized in Eclipse (V11) treatment planning system (TPS) using progressive resolution optimizer-III and final dose calculations were performed using analytical anisotropic algorithm with 1.5 mm grid resolution. All AS presented in this study were treated with VMAT based HSRT to a total dose of 25Gy in 5 fractions (5fractions/week). VMAT plan contains 2-4 non-coplanar arcs. Treatment planning was performed to achieve at least 99% of PTV volume (D99) receives 100% of prescription dose (25Gy), while dose to OAR's were kept below the tolerance limits. Dose-volume histograms (DVH) were analyzed to assess plan quality. Treatments were delivered using upgraded 6 MV un-flattened photon beam (FFF) from Clinac-iX machine. Extensive pretreatment quality assurance measurements were carried out to report on quality of delivery. Point dosimetry was performed using three different detectors, which includes CC13 ion-chamber, Exradin A14 ion-chamber and Exradin W1 plastic scintillator detector (PSD) which have measuring volume of $0.13cm^3$, $0.009cm^3$ and $0.002cm^3$ respectively. Results: Average PTV volume of AS was 11.3cc (${\pm}4.8$), and located in eloquent areas. VMAT plans provided complete PTV coverage with average conformity index of 1.06 (${\pm}0.05$). OAR's dose were kept below tolerance limit recommend by American Association of Physicist in Medicine task group-101(brainstem $V_{0.5cc}$ < 23Gy, cochlea maximum < 25Gy and Optic pathway <25Gy). PSD resulted in superior dosimetric accuracy compared with other two detectors (p=0.021 for PSD.

Population Pharmacokinetic Modeling of Vancomycin in Patients with Cancer (암환자에게 반코마이신의 집단약물동태학 모델연구)

  • 최준식;민영돈;범진필
    • YAKHAK HOEJI
    • /
    • v.43 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • The purpose of this study was to determine pharmacokinetic parameters of vancomycin using peak and trough plasma level (PTL) and Bayesian analysis in 20 Korean normal volunteers, 16 gastric cancer and 12 lymphoma patients and also using the compartment model dependent (nonlinear least squares regression: NLSR) and compartment model independent (Lagrange) analysis in 10 ovarian cancer patients. Nonparametric expected maximum (NPEM) algorithm for calculation of the population pharmacokinetic parameters was used, and these parameters were applied for clinical pharmacokinetic parameters by Bayesian analysis. Vancomycin was administered as dose of 1.0 g every 12 hrs for 3 days by IV infusion over 60 minutes in normal volunteers, gastric cancer and lymphoma patients. Population pharmacokinetic parameters, K and Vd in gastric cancer and lymphoma patients using NPEM algorithm were $0.158{\pm}0.014{\;}hr^{-1},{\;}0.630{\pm}0.043{\;}L/kg{\;}and{\;}0.131{\pm}0.0261{\;}hr^{-1},{\;}0.631{\pm}0.089{\;}L/kg$ respectively. The K and Vd in gastric cancer and lymphoma patients using Bayesian analysis were $0.151{\pm}0.027,{\;}0.126{\pm}0.056{\;}hr^{-1}{\;}and{\;}0.62{\pm}0.105,{\;}0.63{\pm}0.095{\;}L/kg$. The K and Vd in ovarian cancer patient using the NLSR and Lagrange analysis were $0.109{\pm}0.008,{\;}0.126{\pm}0.012{\;}hr^{-1}{\;}and{\;} 0.76{\pm}0.08,{\;}0.69{\pm}0.19{\;}L/kg$, respectively. It is necessary for effective dosage regimen of vancomycin in cancer patients to use these population parameters.

  • PDF

A Study on the Protection and Measuring Algorithm of IED in Load Condition (부하상태를 고려한 IED 보호 및 계측 알고리즘에 관한 연구)

  • Lee, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.527-532
    • /
    • 2012
  • Recently, in power system, even though the needs of protective IED(Intelligent Electronic Device) is highly increased, there are some problems in the field when use the IED. When the IED is in the fluctuated overload condition, because of the existing algorithm calculate the trip time only with the measured current of just previous measuring stage, the calculated trip time is not a proper value for the overload protection at this kind of condition, and when the load current fluctuate between overload and normal condition, because of the instantaneous reset characteristic of existing algorithm the IED dose not trip. And the non linear loads using power electronic elements seem to be increased. These non linear loads require a counterplan about various harmonics incoming to electric power systems. So we will give solutions about these problems.

A Numerical Study on Passengers' Evacuation in a subway station in case of Fire Occurrence (화재 발생 지하철 역사에서의 여객 대피 해석에 관한 연구)

  • Kim, Chi-Gyeom;Lee, Sung-Won;Hur, Nahm-Keon;Nam, Seong-Won
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.142-147
    • /
    • 2009
  • In the present study, a numerical simulation of passenger evacuation in a subway station was performed. Algorithm for passenger flow analysis based on DEM(Discrete Element Method) has been improved to simulate passenger flow in detailed geometry. The effect of grid density was assessed in the present study to show the advantage of using finer grid in the simulation. The method of coupling passenger flow and fire simulation has also been investigated to analyze passenger evacuation flow under fire. In this method the CO distributions in the subway station was used to assess fire hazards of passenger by means of FED(Fractional Effective Dose) model. Using the coupled algorithm a simulation for passenger evacuation flow and fire analysis were performed simultaneously in the simplified subway station. This algorithm could be used in the design of subway station for the purpose of passengers' safety in case of fire.

  • PDF

A Study on the Design of Optimum Sidelobe Suppression Filter for Barker Codes (바커 코드에 대한 최적 부엽 억제 필터의 설계에 관한 연구)

  • 정경태
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1991.06a
    • /
    • pp.151-156
    • /
    • 1991
  • In this paper, we propose a new algorithm for designing the R-G filter that has optimum performance in terms of mean square sidelobe level(MSSL) for the Barker code. The advantage of the conventional R-G filter lies in its simple structure so that it can be easily implemented. However, the conventional R-G filter dose not have optimum performances in terms of peak sidelobe level(PSL), mean sidelobe level(MSL), and MSSL. Recently, a(R-G)LP filter of which filter coefficients are obtained by the linear programming algorithm was proposed and known to have optimum performance in PSL. The proposed (R-G)LS filter keeps the simple structure of the conventional R-G filter and has the filter coefficients that minimizes the sidelobe in the least square sense. The analytic results show that the proposed (R-G)LS filter has better performances than the conventional R-G filter in terms of PSL, MSL, and MSSL. Compared with (R-G)LP filter, the proposed (R-G)LS filter has better performances in terms of MSL and MSSL. The proposed filter design algorithm can be applied to the other binary codes such as truncated pseudonoise(PN) codes and concatenated codes.

  • PDF