• Title/Summary/Keyword: Dose Enhancement

Search Result 296, Processing Time 0.024 seconds

Isolation of an Oocyte Stimulatory Peptide from the Ovarian Follicular Fluid of Water Buffalo (Bubalus bubalis)

  • Gupta, P.S.P.;Ravindra, J.P.;Nandi, S.;Raghu, H.M.;Ramesha, K.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1557-1563
    • /
    • 2005
  • Ovarian follicular fluid contains both stimulatory and inhibitory agents that influence the growth and maturation of oocyte. In the present study, an attempt was made to isolate and study the biological properties of ovarian follicular fluid peptide(s) in buffaloes. Bubaline ovarian follicular was made steroid- and cell-free. A protein fraction was obtained by saturation (30-35% level) of the follicular fluid with ammonium sulfate. The protein fraction was purified with Sephadex-G 50 gel filtration chromatography and a single peak was obtained in the eluant volume, which was lyophilized. SDS-PAGE of the lyophilized fraction revealed a single band and the molecular weight of the peptide was 26.6 kDa. The peptide stimulated the cumulus cell expansion and in vitro maturation rate of oocytes in buffaloes in a dose dependent manner when it was incorporated at different dose levels (0, 10, 25, 50, 100 and 1,000 ng $ml^{-1}$ of maturation medium). The basic culture medium consisted of TCM 199 with Bovine serum albumin (0.3%). The in vitro maturation rates were comparable to those obtained with a positive control medium (TCM 199+20 ng EGF $ml^{-1}$+steer serum (20%)). Further purification and biological assays may throw more light on the nature and functions of this peptide.

An Experimental Study on the Effects of Hyperthermia and Irradiation on the Rat's Kidney (방사선조사와 온열요법이 백서신에 미치는 조직 변화에 관한 실험적 연구)

  • Yoo, Myung-Hee;Lee, Kyung-Ja;Rhee, Chung-Sik
    • Radiation Oncology Journal
    • /
    • v.7 no.2
    • /
    • pp.157-169
    • /
    • 1989
  • Radiological and clinical evidences indicate that hyperthermia combined with irradiation produce a significant improvement in therapeutic effect of cancer The experiences obtained from 90 rats' kidney A single dose of irradiation ranged from 6Gy, 8Gy and 10Gy was delivered on the rat's kidney. The combined therapy group had the same irradiation after hyperthermia at $42\~44^{\circ}C$ for 30 minutes. Microscopic examination and calculation of thermal enhancement ratio were carried out, and the results were as follows: 1. In the group of hyperthermia alone, there were moderate glomerular congestion and mild tubular degeneration on light microscopic examination. 2. In the group of irradiation alone, tubular degeneration was noted in 6Gy irradiation and its severity was increased along with radiation dose. 3. In the group of hyperthermia combined with irradiation, tubular degeneration and necrosis were appeared in 6Gy and 10Gy irradiation, respectively. 4. On electron microscopic examination, proximal convoluted tubular and glomerular changes in irradiation group were similar to that of combined with hyperthermia, and its severity was increased along with observation periods. 5. Thermal enhancement ratio (TER) was 1.0 after evaluation of histipathologic changes in rat's kidney, with combination therapy.

  • PDF

Contrast Optimization using of Weight-based Injection Protocol in Pediatric Abdomen CT Examination (소아 복부 CT 검사에서 체중에 기반한 조영제 주입 프로토콜 적용에 따른 조영증강의 최적화)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.575-584
    • /
    • 2021
  • The aim of this study was to achieve optimal portal phase while reducing contrast medium by applying weight-based dose protocol compared to standard fixed dose protocol to performing of pediatric abdominal CT examination. Discovery 750HD (General Electric Medical Systems, Milwaukee, USA) was used, and a total of 167 children consisting of 85 men and 82 women under the age of 18 were studied. The group in which the 300 mgI/ml(Xenetix, Guerbet, France) contrast medium was fixedly injected at twice body weight and the group injected with physiological saline while gradually decreasing the injection amount by 10% while applying the weight-based protocol were distinguished. Also, the CT number and SNR of abdominal organs were compared and evaluated while changing the scan delay time. Subjective image quality of enhancement and beam-hardening artifacts of around the heart was assessed with five-point criterion. The group adapted weight-based protocol with 20% reduction in contrast medium was most similar in contrast enhancement in the group with fixed injection at twice body weight. Furthermore, the group with a delay time of 20% had the highest contrast enhancement effect, and the difference in CT attenuation coefficient from the group scanned immediately after injection of the contrast media. Therefore, the appropriate delay time after injection of the contrast agent increased the contrast enhancement of the parenchymal organ. In addition, the weight-based injection protocol with normal saline reduced artifacts around the heart, and the effect of contrast enhancement could be maintained. In conclusion, it is possible to reduce dosage of contrast media through the application of weight-based injection protocols and appropriate latency, and to characterize optimal portal phase imaging on pediatric abdominal CT.

Optimization of the Empirical Method to the Enhancement Image of the Four Chambers at the Same Time in the Pediatric Cardiac Computed Tomography (소아 심장 전산화단층촬영 검사에서 4 chamber의 동시 조영증강 영상에 대한 최적화 방안)

  • Park, Chanhyuk;Lee, Jaeseung;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.6
    • /
    • pp.279-285
    • /
    • 2014
  • This study is to have dose reduction and minimization of excessive use of contrast medium in the pediatric cardiac computed tomography and to suggest the optimization plan to acquire the enhancement image of the 4 chambers at the same time by formulating scan delay time in empirical method with considering variables such as contrast medium injection velocity and cardiac approaching time. Quantitative, qualitative and dose assessment were carried out for 30 pediatric patients who had taken the cardiac examination. In conclusion, image enhancement in 4 chambers of the cardiac shows over 300 HU which is proper to pediatric cardiac reading by applying the empirical method with calculating scan delay time according to weight and contrast medium volume and injection velocity. Qualitative image assessments in confidence sharpness and noise have excellence qualitatively. Exposure dose to pediatrics also decreases precisely. Therefore this study is judged to take a important role of making optimization images with advantages of dose reduction and less side effects caused by it's excessive use in clinic.

Biophysical Evaluation of Radiosensitization by AuNPs Nanoparticles Irradiated Photon beam (photon빔 조사 후 AuNPs 입자의 방사선 감수성 향상에 관한 생물물리학적 평가)

  • Choi, Eunae;Son, Jaeman
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.7
    • /
    • pp.483-487
    • /
    • 2016
  • The purpose of this study is to investigate whether gold nanoparticles had radiosensitization when combined with gamma and x ray beam. Cytotoxicity was mearsured with comparing survival fraction after incubated time 6,12,18 and 24 hours. Clonogenic assay was employed to assess survival fraction of cells with and without gold nanoparticles treatment following gamma ray irradiation. The most of gold nanoparticles were distributed in the cytoplasm. And the toxicity of gold nanoparticles used this study were found to be non-cytotoxic. And we also observed enhancement by about 40% in RBE value for gamma ray irradiation of cells treated with gold nanoparticles. Dose reduction of about half for gamma ray irradiation is demonstrated for gold nanoparticles treated cells as compared to untreated cells. In cells with exposed to gamma ray, DNA damage was increased when compared to only radiation exposed cells. The study revealed a significant reduction in radiation dose for killing the cells with internalized gold nanoparticles as compared to the cells without gold nanoparticles. The gold nanoparticles treatment resulted in enhancement of radiation effect as evident from increase in relative biological effectiveness values for photon irradiated cells.

Influence of Intravenous Contrast Medium on Dose Calculation Using CT in Treatment Planning for Oesophageal Cancer

  • Li, Hong-Sheng;Chen, Jin-Hu;Zhang, Wei;Shang, Dong-Ping;Li, Bao-Sheng;Sun, Tao;Lin, Xiu-Tong;Yin, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1609-1614
    • /
    • 2013
  • Objective: To evaluate the effect of intravenous contrast on dose calculation in radiation treatment planning for oesophageal cancer. Methods: A total of 22 intravein-contrasted patients with oesophageal cancer were included. The Hounsfield unit (HU) value of the enhanced blood stream in thoracic great vessels and heart was overridden with 45 HU to simulate the non-contrast CT image, and 145 HU, 245 HU, 345 HU, and 445 HU to model the different contrast-enhanced scenarios. 1000 HU and -1000 HU were used to evaluate two non-physiologic extreme scenarios. Variation in dose distribution of the different scenarios was calculated to quantify the effect of contrast enhancement. Results: In the contrast-enhanced scenarios, the mean variation in dose for planning target volume (PTV) was less than 1.0%, and those for the total lung and spinal cord were less than 0.5%. When the HU value of the blood stream exceeded 245 the average variation exceeded 1.0% for the heart V40. In the non-physiologic extreme scenarios, the dose variation of PTV was less than 1.0%, while the dose calculations of the organs at risk were greater than 2.0%. Conclusions: The use of contrast agent does not significantly influence dose calculation of PTV, lung and spinal cord. However, it does have influence on dose accuracy for heart.

Radio-Sensitization by Piper longumine of Human Breast Adenoma MDA-MB-231 Cells in Vitro

  • Yao, Jian-Xin;Yao, Zhi-Feng;Li, Zhan-Feng;Liu, Yong-Biao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.7
    • /
    • pp.3211-3217
    • /
    • 2014
  • Background: The current study investigated the effects of Piper longumine on radio-sensitization of human breast cancer MDA-MB-231 cells and underlying mechanisms. Materials and Methods: Human breast cancer MDA-MB-231 cells were cultured in vitro and those in logarithmic growth phase were selected for experiments divided into four groups: control, X-ray exposed, Piper longumine, and Piper longumine combined with X-rays. Conogenic assays were performed to determine the radio-sensitizing effects. Cell survival curves were fitted by single-hit multi-target model and then the survival fraction (SF), average lethal dose ($D_0$), quasi-threshold dose ($D_q$) and sensitive enhancement ratio (SER) were calculated. Cell apoptosis was analyzed by flow cytometry (FCM). Western blot assays were employed for expression of apoptosis-related proteins (Bc1-2 and Bax) after treatment with Piper longumine and/or X-ray radiation. The intracellular reactive oxygen species (ROS) level was detected by FCM with a DCFH-DA probe. Results: The cloning formation capacity was decreased in the group of piperlongumine plus radiation, which displayed the values of SF2, D0, Dq significantly lower than those of radiation alone group and the sensitive enhancement ratio (SER) of D0 was1.22 and 1.29, respectively. The cell apoptosis rate was increased by the combination treatment of Piper longumine and radiation. Piper longumine increased the radiation-induced intracellular levels of ROS. Compared with the control group and individual group, the combination group demonstrated significantly decreased expression of Bcl-2 with increased Bax. Conclusions: Piper longumine at a non-cytotoxic concentration can enhance the radio-sensitivity of MDA-MB-231cells, which may be related to its regulation of apoptosis-related protein expression and the increase of intracellular ROS level, thus increasing radiation-induced apoptosis.

Influence of silpozz and rice husk ash on enhancement of concrete strength

  • Panda, K.C.;Prusty, S.D.
    • Advances in concrete construction
    • /
    • v.3 no.3
    • /
    • pp.203-221
    • /
    • 2015
  • This paper presents the results of a study undertaken to investigate the enhancement of concrete strength using Silpozz and Rice Husk Ash (RHA). The total percentage of supplementary cementitious material (SCM) substituted in this study was 20%. Six different concrete mixes were prepared such as without replacement of cement with silpozz and RHA (0% silpozz and 0% RHA) is treated as conventional concrete, whereas in other five concrete mixes cement was replaced by 20% of silpozz and RHA as (0% silpozz and 20% RHA), (5% silpozz and 15% RHA), (10% silpozz and 10% RHA), (15% silpozz and 5% RHA) and (20% silpozz and 0% RHA) with decreasing water-binder (w/b) ratio i.e. 0.375, 0.325 and 0.275 and increasing super plasticiser dose. New generation polycarboxylate base water reducing admixture i.e., Cera Hyperplast XR-W40 was used in this study. The results of this research indicate that as w/b decreases, super plasticiser dose need to be increased so as to increase the workability of concrete. The effects of replacing cement by silpozz and RHA on the compressive strength, split tensile strength and flexural strength were evaluated. The concrete mixture with different combination of silpozz and RHA gives higher strength as compared to control specimen for all w/b ratios and also observed that the early age strength of concrete is more as compared to the later age strength. It is also observed that the strength enhancement of concrete mixture prepared with the combination of cement, silpozz and RHA is higher as compared to the concrete mixture prepared with cement and silpozz or cement and RHA.

General Radiography Imaging Usage and Effective Dose of Inpatients: Based on Data from Inpatients in 2018 (입원환자 일반촬영 이용량 및 피폭선량: 2018년 입원환자데이터)

  • Jong-Won Gil
    • Journal of radiological science and technology
    • /
    • v.47 no.2
    • /
    • pp.107-116
    • /
    • 2024
  • In this study, we analyzed the use of general radiography imaging and effective dose in inpatients. Our aim is to help reduce national medical radiation exposure doses and develop rational health-care financial policies. The effective dose for each general radiography was calculated using the ALARA-GR program for 53 types (total: 260 codes) general radiography codes selected from 'National Health Insurance Care Benefit Cost'. The usage of general radiography was analyzed in the 2018 inpatient patient data of the Health Insurance Review and Assessment Service, and the effective dose for each general radiography was analyzed. 89.00% of inpatients undergo general radiography imaging at least once, with an average of 12.63 scans per person and an effective dose of 1.00 mSv. Those who received support from Medical Aid showed a higher value compared to those who were insured by National Health Insurance, with 17.39 cases and 1.43 mSv (p<.001). Chest had the highest usage rate at 23.12% for general radiography imaging, while L-spine had the highest effective dose at 24.53%. It is estimated that 420 inpatients patients undergo 121 to 820 general radiography imaging procedures per year, and 233 inpatients are estimated to have an annual effective dose of >20.00~58.25 mSv. Rational use of health-care finances and the practice of medical radiation safety management are essential for the well-being of individuals, the enhancement of quality of life, and the improvement of health-care quality.

Metabolic profiling study of ketoprofen-induced toxicity using 1H NMR spectroscopy coupled with multivariate analysis

  • Jung, Jee-Youn;Hwang, Geum-Sook
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.1
    • /
    • pp.54-68
    • /
    • 2011
  • $^1H$ nuclear magnetic resonance (NMR) spectroscopy of biological samples has been proven to be an effective and nondestructive approach to probe drug toxicity within an organism. In this study, ketoprofen toxicity was investigated using $^1H$-NMR spectroscopy coupled with multivariate statistical analysis. Histopathologic test of ketoprofen-induced acute gastrointestinal damage in rats demonstrated a significant dose-dependent effect. Furthermore, principal component analysis (PCA) derived from $^1H$-NMR spectra of urinary samples showed clear separation between the vehicle-treated control and ketoprofen-treated groups. Moreover, PCA derived from endogenous metabolite concentrations through targeted profiling revealed a dose-dependent metabolic shift between the vehicle-treated control, low-dose ketoprofen-treated (10 mg/kg body weight), and high-dose ketoprofen-treated (50 mg/kg) groups coinciding with their gastric damage scores after ketoprofen administration. The resultant metabolic profiles demonstrated that the ketoprofen-induced gastric damage exhibited energy metabolism perturbations that increased urinary levels of citrate, cis-aconitate, succinate, and phosphocreatine. In addition, ketoprofen administration induced an enhancement of xenobiotic activity in fatty oxidation, which caused increase levels of N-isovalerylglycine, adipate, phenylacetylglycine, dimethylamine, betaine, hippurate, 3-indoxylsulfate, N,N-dimethylglycine, trimethyl-N-oxide, and glycine. These findings demonstrate that $^1H$-NMR-based urinary metabolic profiling can be used for noninvasive and rapid way to diagnose adverse drug effects and is suitable for explaining the possible biological pathways perturbed by nonsteroidal anti-inflammatory drug toxicity.