• Title/Summary/Keyword: Doppler-broadened environment

Search Result 2, Processing Time 0.018 seconds

Formation of a Stationary Light Pulse in a Doppler-Broadened EIT Medium

  • Chough, Y.T.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.10
    • /
    • pp.1479-1485
    • /
    • 2018
  • A number of experiments have been performed on light slowing and stopping in the electromagnetically induced transparency (EIT) media of hot atomic gases where the Doppler-shift may add detunings to the field frequencies in an inhomogeneous fashion. We provide here a theoretical analysis as to the effect of such a Doppler-broadened environment on the dynamics of the system in comparison to a cold atomic medium. We will show that one of the most critical factors in the formation of a stationary light pulse is the enhancement of the excited-state decay rate caused by the collisions between the atoms of the medium and the molecules of the buffer gas.

A study on the target detection method of the continuous-wave active sonar in reverberation based on beamspace-domain multichannel nonnegative matrix factorization (빔공간 다채널 비음수 행렬 분해에 기초한 잔향에서의 지속파 능동 소나 표적 탐지 기법에 대한 연구)

  • Lee, Seokjin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.489-498
    • /
    • 2018
  • In this paper, a target detection method based on beamspace-domain multichannel nonnegative matrix factorization is studied when an echo of continuous-wave ping is received from a low-Doppler target in reverberant environment. If the receiver of the continuous-wave active sonar moves, the frequency range of the reverberation is broadened due to the Doppler effect, so the low-Doppler target echo is interfered by the reverberation in this case. The developed algorithm analyzes the multichannel spectrogram of the received signal into frequency bases, time bases, and beamformer gains using the beamspace-domain multichannel nonnnegative matrix factorization, then the algorithm estimates the frequency, time, and bearing of target echo by choosing a proper basis. To analyze the performance of the developed algorithm, simulations were performed in various signal-to-reverberation conditions. The results show that the proposed algorithm can estimate the frequency, time, and bearing, but the performance was degraded in the low signal-to-reverberation condition. It is expected that modifying the selection algorithm of the target echo basis can enhance the performance according to the simulation results.