• Title/Summary/Keyword: Doppler radar sensor

Search Result 35, Processing Time 0.023 seconds

Velocity Estimation of Moving Targets on the Sea Surface by Azimuth Differentials of Simulated-SAR Image

  • Yang, Chang-Su;Kim, Youn-Seop;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.297-304
    • /
    • 2010
  • Since the change in Doppler centroid according to moving targets brings alteration to the phase in azimuth differential signals of synthetic aperture radar (SAR) data, one can measure the velocity of the moving targets using this effect. In this study, we will investigate theoretically measuring the velocity of an object from azimuth differential signals by using range compressed data which is the interim outcome of treatment from the simulated SAR raw data of moving targets on the background of sea clutter. Also, it will provide evaluation for the elements that affect the estimation error of velocity from a single SAR sensor. By making RADARSAT-1 simulated image as a specific case, the research includes comparisons for the means of velocity measurement classified by the directions of movement in the four following cases. 1. A case of a single target without currents, 2. A case of a single target with tidal currents of 0.5 m/s, 1 m/s, and 3 m/s, 3. A case of two targets on a same azimuth line moving in a same direction and velocity, 4. A case of a single target contiguous to land where radar backscatter is strong. As a result, when two moving targets exist in SAR image outside the range of approximately 256 pixels, the velocity of the object can be measured with high accuracy. However, when other moving targets exist in the range of approximately 128 pixels or when the target was contiguous to the land of strong backscatter coefficient (NRCS: normalized radar cross section), the estimated velocity was in error by 10% at the maximum. This is because in the process of assuming the target's location, an error occurs due to the differential signals affected by other scatterers.

Tx/Rx Isolation enhancement of the Planar Patch Antenna at 5.8GHz ISM band (5.8GHz ISM 대역 평면안테나의 송수신분리도 개선)

  • Yun, Gi-Ho
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.385-392
    • /
    • 2013
  • In this paper, microstrip antenna to enhance the isolation between transmitting port and receiving port under the proximity objects is proposed, and applied to the Doppler radar sensor working at 5.8GHz ISM band which detects vital signals of a human body. Two 3dB quadrature hybrids are placed around radiation patch to form a balanced structure between transmitting port and receiving port, such that it consistently provides enhanced Tx/Rx isolation and excellent return loss over nearby objects. It is theoretically analyzed and simulated to verify the validity of the proposed application. The fabricated antenna that is 2mm away from the human body, has more than 16 dB return loss and at least 30dB isolation over ISM frequency band of 5.8GHz.

Demonstration of Optimizing the CFAR Threshold for Development of GMTI System (GMTI 시스템 개발을 위한 CFAR 임계치 최적화)

  • Kim, So-Yeon;Yoon, Sang-Ho;Shin, Hyun-Ik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.141-146
    • /
    • 2018
  • The Ground Moving Target Indication(GMTI) technique can detect the moving targets on land using its Doppler returns. Also, the GMTI system can work in night regardless of the weather condition because it is an active sensor that uses the electromagnetic waves as its source. In order to develop the GMTI system, Constant False Alarm Rate(CFAR) threshold optimization is important because the main performances like detection probability, false alarm rate and Minimum Detectable Velocity(MDV) are related deeply with CFAR threshold. These key variables are used to calculate CFAR threshold and then trade-off between the variables is performed. In this paper, CFAR threshold optimization procedures are introduced, and the optimization results are demonstrated.

Design of 10.525GHz Self-Oscillating Mixer Using P-Core Voltage Controlled Oscillator (P-코어 VCO를 사용한 10.525GHz 자체발진 혼합기의 설계)

  • Lee, Ju-Heun;Chai, Sang-Hoon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.61-68
    • /
    • 2018
  • This paper describes design of a 10.525 GHz self oscillating mixer semiconductor IC chip combining voltage controlled oscillator and frequency mixer using silicon CMOS technology for Doppler radar applications. The p-core type VCO included in the self oscillating mixer minimizes the noise contained in the transmitted signal. This noise minimization increases the sensing distance and acts in a direction favorable to the reaching distance and the sensitivity of the motion detection sensor. Simulation results for phase noise show that a VCO designed as a P-core has a noise characteristic of -106.008 dBc / Hz at 1 MHz offset and -140.735 dBc / Hz at 25 MHz offset compared to a VCO designed with N-core and NP-core showed excellent noise characteristics. If a self-oscillating mixer is implemented using a p-core designed VCO in this study, a motion sensor with excellent range and reach sensitivity will be produced.

Study on the Projectile Velocity Measurement Using Eddy Current Probe (와전류 탐촉자를 이용한 총구 탄속 측정에 관한 연구)

  • Shin, Jungoo;Son, Derac
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.3
    • /
    • pp.83-86
    • /
    • 2015
  • Nowadays the weapon systems are employed air bursting munition (ABM) as smart programmable 40 mm shells which have been developed in order to hit the target with programmed munition that can be air burst after a set distance in the battlefield. In order to improve the accuracy of such a bursting time, by measuring the speed of the munition from the barrel, weapon systems calculate the exact time of flight to the target and then the time information must be inputted to the munition. In this study, we introduce a device capable of detecting a shot at K4 40 mm automatic grenade. The shot is composed of a rotating copper band to convert linear motion into rotary motion when it passes through the barrel, the steel section is exert the effect of fragment and aluminum section to give fuze information. The aluminum section was used to detect munition using eddy current method. To measure muzzle velocity by means of non-contact method, two eddy current probes separated 10 cm was employed. Time interval between two eddy current probe detection times was used as muzzle velocity. The eddy current probe was fabricated U-shape Mn-Zn ferrite core with enamelled copper wire, and 200 kHz alternating current was used to detect inductance change. Measured muzzle velocity using the developed sensor was compared to the Doppler radar system. The difference was smaller than 1%.