• Title/Summary/Keyword: Doping layer

Search Result 478, Processing Time 0.026 seconds

Doping-level dependent dry-etch damage of in n-type GaN (n형 GaN의 doping 농도에 따르는 건식 식각 손상)

  • Lee, Ji-Myon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.417-420
    • /
    • 2004
  • The electrical effects of dry-etch on n-type GaN by an inductively coupled $Cl_2/CH_4/H_2/Ar$ plasma were investigated as a function of ion energy, by means of ohmic and Schottky metallization method. The specific contact resistivity(${\rho}_c$) of ohmic contact was decreased, while the leakage current in Schottky diode was increased with increasing ion energy due to the preferential sputtering of nitrogen. At a higher rf power, an additional effect of damage was found on the etched sample, which was sensitive to the dopant concentration in terms of the ${\rho}_c$ of ohmic contact. This was attributed to the effects such as the formation of deep acceptor as well as the electron-enriched surface layer within the depletion layer. Furthermore, thermal annealing process enhanced the ohmic and Schottky property of heavily damaged surface.

  • PDF

Localized formation of porous silicon usin gdoping concentration selectivity (도핑농도의 선택도를 이용한 국부적 다공질 실리콘의 형성)

  • 이주혁;김성진;이성필;이철진;최복길;박천만;심관수
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.465-468
    • /
    • 1998
  • For porous silicon layer to be used as active layer in various devices, it is necessary to be formed locally along with a designed pattern on the wafer. However, there is still no suitable masking layer to withstand against the high concentration of HF for a time of some minutes up to some hours during the anodic process effectively. In this work, we investigated the property of selectivity between p$^{+}$ and n layers to form localized porous silicon even without a mask by the difference of the anodic I-V characteristics on the doping level and doping type. The width of the pattern made in the sample was 2mm, and the formed porous silicon layer was observed by SEM to see the morphology on the cross section below the surface. As the results, it was found that the selectivity was reasonable for the pattern size over 100.mu.m.m.

  • PDF

The Fabrication and Analysis of the White Organic Electroluminescent Devices by varying the Doping Concentrations of Rubrene and the Thickness of NPB layer (Rubrene의 도핑량과 NPB층의 두께변화에 따른 백색 유기전계발광소자 제작 및 분석)

  • 조재영;김중연;최성진;강명구;신선호;주성후;오환술
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.37-40
    • /
    • 2002
  • We have been fabricated the white organic electroluminescent devices using vacuum evaporation method. The structure of the white OELD is Glass/1T0/NPB/DPVBi/AI $q_{3:}$ Ru bren e/B CP/Alq $q_3$/Al. We have got the white emission with two-wavelength that is mixing blue emission in DPVBi layer and orange emission in Al $q_{3:}$Rubrene layer by varying tile doping concentrations of Rubrene and the thickness of NPB layer.yer.

  • PDF

Diffusion Behaviors of B and P at the Interfaces of Si/$SiO_2$ Multilayer System After the Annealing Process

  • Jang, Jong-Shik;Kang, Hee-Jae;Hwang, Hyun-Hye;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.232-232
    • /
    • 2012
  • The doping of semiconducting elements is essential for the development of silicon quantum dot (QD) solar cells. Especially the doping elements should be activated by substitution at the crystalline sites in the crystalline silicon QDs. However, no analysis technique has been developed for the analysis of the activated dopants in silicon QDs in $SiO_2$ matrix. Secondary ion mass spectrometry (SIMS) is a powerful technique for the in-depth analysis of solid materials and the impurities analysis of boron and phosphorus in semiconductor materials. For the study of diffusion behaviour of B and P by SIMS, Si/$SiO_2$ multilayer films doped by B or P were fabricated and annealed at high temperatures for the activated doping of B and P. The distributions of doping elements were analyzed by SIMS. Boron found to be preferentially distributed in Si layer rather than the $SiO_2$ layer. Especially the B in the Si layers was separated to two components of an interfacial component and a central one. The central component was understood as the activated elements. On the other hand, phosphorus did not show any preferred diffusion.

  • PDF

Emission Characteristics of White Organic Light-Emitting Diodes Using Micro Lens Array Film (Micro Lens Array Film을 이용한 백색 OLED의 발광 특성)

  • Chun, Hyun-Dong;Na, Hyunseok;Yang, Jae-Woong;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.2
    • /
    • pp.93-97
    • /
    • 2013
  • We studied the emission characteristics of white phosphorescent organic light-emitting diodes (PHOLEDs), which were fabricated using a two-wavelength method. To optimize emission characteristics of white PHOLEDs, white PHOLEDs with co-doping and blue/co-doping emitting layer (EML) structures were fabricated using a host-dopant system. The total thickness of light-emitting layer was 25 nm and the dopant of blue and red was FIrpic and $Bt_2Ir(acac)$ in UGH3, respectively. In case of co-doping structure, applying micro lens array film showed efficiency improvement from the current efficiency 78.5 cd/A and power efficiency 40.4 lm/W to the current efficiency 131.1 cd/A and power efficiency 65 lm/W and blue / co-doping structure showed efficiency improvement from the current efficiency 43.8 cd/A and power efficiency 22 lm/W to the current efficiency 69 cd/A and power efficiency 32 lm/W.

Study of Ni/Cu Front Metal Contact Applying Selective Emitter Silicon Solar Cells (선택도핑을 적용한 Ni/Cu 전면 전극 실리콘 태양전지에 관한 연구)

  • Lee, JaeDoo;Kwon, Hyukyong;Lee, SooHong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.905-909
    • /
    • 2011
  • The formation of front metal contact silicon solar cells is required for low cost, low contact resistance to silicon surfaces. One of the available front metal contacts is Ni/Cu plating, which can be mass produced via asimple and inexpensive process. A selective emitter, meanwhile, involves two different doping levels, with higher doping (${\leq}30{\Omega}/sq$) underneath the grid to achieve good ohmic contact and low doping between the grid in order to minimize the heavy doping effect in the emitter. This study describes the formation of a selective emitter and a nickel silicide seed layer for the front metallization of silicon cells. The contacts were thickened by a plated Ni/Cu two-step metallization process on front contacts. The experimental results showed that the Ni layer via SEM (Scanning Electron Microscopy) and EDX (Energy dispersive X-ray spectroscopy) analyses. Finally, a plated Ni/Cu contact solar cell displayed efficiency of 18.10% on a $2{\times}2cm^2$, Cz wafer.

Iodine Doping of Pentacene and its Electrical Properties

  • Rahim, Abdur;Lee, Young-Kyu;Lee, Chi-Young;Lee, Jae-Gab
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.238.2-238.2
    • /
    • 2011
  • Organic thin film transistors (OTFTs) have been attracting considerable attention because of their potential use in low-cost, large area, electronic devices such as flexible displays, biochemical sensors, and smart cards. In past several years, gold/pentacene has been frequently used in OTFTs because of the high mobility of pentacene and the high work function of gold. To improve the performance of the OTFTs contact area doping of pentacene with p-doping materials are well known. In this work we demonstrated selectively contact area doping of pentacene with Iodine vapor. For effective doping elevated pentacene layer under the source-drain area was deposited and exposed to Iodine vapor. We got better electrical performance for elevated pentacene structure rather than planer structure with relatively high field-effect mobility.

  • PDF

A simulation study on the figure of merit optimization of a 1200V 4H-SiC DMOSFET (1200V급 4H-SiC DMOSFET 성능지수 최적화 설계 시뮬레이션)

  • Choi, Chang-Yong;Kang, Min-Suk;Bang, Wook;Kim, Sang-Chul;Kim, Nam-Kyun;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.63-63
    • /
    • 2009
  • In this work, we demonstrate 800V 4H-SiC power DMOSFETs with several structural alterations to observe static DC characteristics, such as a threshold voltage ($V_{TH}$) and a figure of merit ($V_B^2/R_{SP,ON}$). To optimize the static DC characteristics, we consider four design parameters; (a) the doping concentration ($N_{CSL}$) of current spreading layer (CSL) beneath the p-base region, (b) the thickness of p-base ($t_{BASE}$), (c) the doping concentration ($N_J$) and width ($W_J$) of a JFET region, (d) the doping concentration ($N_{EPI}$) and thickness ($t_{EPI}$) of epi-layer. Design parameters are optimized using 2D numerical simulations and the 4H-SiC DMOSFET structure results in high figure of merit ($V_B^2/R_{SP,ON}$>~$340MW/cm^2$) for a power MOSFET in $V_B{\sim}1200V$ range.

  • PDF

$CsN_3$ as an air stable and low temperature evaporable novel n doping material for high efficiency and low driving voltage in organic light-emitting diodes

  • Lee, Jun-Yeob;Yook, Kyoung-Soo;Jeon, Soon-Ok;Joo, Chul-Woong;Lee, Tae-Woo;Noh, Tae-Yong;Yang, Haa-Jin;Kang, Sung-Kee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1319-1322
    • /
    • 2008
  • $CsN_3$ was developed as a novel n doping material with air stability and low deposition temperature. Evaporation temperature of $CsN_3$ was similar to that of common hole injection material and it worked well as a n dopant in electron transport layer. Driving voltage was lowered and high power efficiency was obtained in green phosphorescent devices by using $CsN_3$ as a dopant in electron transport layer. It could also be used as a charge generation layer in combination with $MoO_3$. In addition, n doping mechanism study revealed that $CsN_3$ is decomposed into Cs and $N_2$ during evaporation. This is the first work reporting air stable and low temperature evaporable n dopant in organic light-emitting diodes.

  • PDF

A Simulation Study on the Structural Optimization of a 800 V 4H-SiC Power DMOSFET (800 V급 4H-SiC DMOSFET 전력 소자 구조 최적화 시뮬레이션)

  • Choi, Chang-Yong;Kang, Min-Seok;Bahng, Wook;Kim, Sang-Cheol;Kim, Nam-Kyun;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.637-640
    • /
    • 2009
  • In this work, we demonstrate 800 V 4H-SiC power DMOSFETs with several structural alterations to obtain a low threshold voltage ($V_{TH}$) and a high figure of merit ($V_B\;^2/R_{SP,ON}$), To optimize the device performance, we consider four design parameters; (a) the doping concentration ($N_{CSL}$) of current spreading layer (CSL) beneath the p-base region, (b) the thickness of p-base ($t_{BASE}$), (c) the doping concentration ($N_J$) and width ($W_J$) of a JFET region, (d) the doping concentration ($N_{EPI}$) and thickness ($t_{EPI}$) of epi-layer. These parameters are optimized using 2D numerical simulation and the 4H-SiC DMOSFET structure results in a threshold voltage ($V_{TH}$) below $^{\sim}$3.8 V, and high figure of merit ($V_B\;^2/R_{SP,ON}$>$^{\sim}$200 $MW/cm^2$) for a power MOSFET in $V_B\;^{\sim}$800 V range.