• Title/Summary/Keyword: Doping concentration

Search Result 784, Processing Time 0.029 seconds

Ellipsometric study of Mn-doped $Bi_4Ti_3O_{12}$ thin films

  • Yoon, Jae-Jin;Ghong, Tae-Ho;Jung, Yong-Woo;Kim, Young-Dong;Seong, Tae-Geun;Kang, Lee-Seung;Nahm, Sahn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.173-173
    • /
    • 2010
  • $Bi_4Ti_3O_{12}$ ($B_4T_3$) is a unique ferroelectric material that has a relatively high dielectric constant, high Curie temperature, high breakdown strength, and large spontaneous polarization. As a result this material has been widely studied for many applications, including nonvolatile ferroelectric random memories, microelectronic mechanical systems, and nonlinear-optical devices. Several reports have appeared on the use of Mn dopants to improve the electrical properties of $B_4T_3$ thin films. Mn ions have frequently been used for this purpose in thin films and multilayer capacitors in situations where intrinsic oxygen vacancies are the major defects. However, no systematic study of the optical properties of $B_4T_3$ films has appeared to date. Here, we report optical data for these films, determined by spectroscopic ellipsometry (SE). We also report the effects of thermal annealing and Mn doping on the optical properties. The SE data were analyzed using a multilayer model that is consistent with the original sample structure, specifically surface roughness/$B_4T_3$ film/Pt/Ti/$SiO_2$/c-Si). The data are well described by the Tauc-Lorentz dispersion function, which can therefore be used to model the optical properties of these materials. Parameters for reconstructing the dielectric functions of these films are also reported. The SE data show that thermal annealing crystallizes $B_4T_3$ films, as confirmed by the appearance of $B_4T_3$ peaks in X-ray diffraction patterns. The bandgap of $B_4T_3$ red-shifts with increasing Mn concentration. We interpret this as evidence of the existence deep levels generated by the Mn transition-metal d states. These results will be useful in a number of contexts, including more detailed studies of the optical properties of these materials for engineering high-speed devices.

  • PDF

Structural and Electrical Properties of Fluorine-doped Zinc Tin Oxide Thin Films Prepared by Radio-Frequency Magnetron Sputtering

  • Pandey, Rina;Cho, Se Hee;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.335-335
    • /
    • 2014
  • Over the past several years, transparent conducting oxides have been extensively studied in order to replace indium tin oxide (ITO). Here we report on fluorine doped zinc tin oxide (FZTO) films deposited on glass substrates by radio-frequency (RF) magnetron sputtering using a 30 wt% ZnO with 70 wt% SnO2 ceramic targets. The F-doping was carried out by introducing a mixed gas of pure Ar, CF4, and O2 forming gas into the sputtering chamber while sputtering ZTO target. Annealing temperature affects the structural, electrical and optical properties of FZTO thin films. All the as-deposited FZTO films grown at room temperature are found to be amorphous because of the immiscibility of SnO2 and ZnO. Even after the as-deposited FZTO films were annealed from $300{\sim}500^{\circ}C$, there were no significant changes. However, when the sample is annealed temperature up to $600^{\circ}C$, two distinct diffraction peaks appear in XRD spectra at $2{\Theta}=34.0^{\circ}$ and $52.02^{\circ}$, respectively, which correspond to the (101) and (211) planes of rutile phase SnO2. FZTO thin film annealed at $600^{\circ}C$ resulted in decrease of resistivity $5.47{\times}10^{-3}{\Omega}cm$, carrier concentration ~1019 cm-3, mobility~20 cm2 V-1s-1 and increase of optical band gap from 3.41 to 3.60 eV with increasing the annealing temperatures and well explained by Burstein-Moss effect. Change of work function with the annealing temperature was obtained by ultraviolet photoemission spectroscopy. The increase of annealing temperature leads to increase of work function from ${\phi}=3.80eV$ (as-deposited FZTO) to ${\phi}=4.10eV$ ($600^{\circ}C$ annealed FZTO) which are quite smaller than 4.62 eV for Al-ZnO and 4.74 eV for SnO2. Through X-ray photoelectron spectroscopy, incorporation of F atoms was found at around the binding energy of 684.28 eV in the as-deposited and annealed FZTO up to 400oC, but can't be observed in the annealed FZTO at 500oC. This result indicates that F atoms in FZTO films are loosely bound or probably located in the interstitial sites instead of substitutional sites and thus easily diffused into the vacuum from the films by thermal annealing. The optical transmittance of FZTO films was higher than 80% in all specimens and 2-3% higher than ZTO films. FZTO is a possible potential transparent conducting oxide (TCO) alternative for application in optoelectronics.

  • PDF

Thermoelectric properties of SiC prepared by refined diatomite (정제 규조토로 합성한 탄화규소의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.596-601
    • /
    • 2020
  • Silicon carbide is considered a potentially useful material for high-temperature electronic devices because of its large band gap energy and p-type or n-type conduction that can be controlled by impurity doping. Accordingly, the thermoelectric properties of -SiC powder prepared by refined diatomite were investigated for high value-added applications of natural diatomite. -SiC powder was synthesized by a carbothermal reduction of the SiO2 in refined diatomite using carbon black. An acid-treatment process was then performed to eliminate the remaining impurities (Fe, Ca, etc.). n-Type semiconductors were fabricated by sintering the pressed powder at 2000℃ for 1~5h in an N2 atmosphere. The electrical conductivity increased with increasing sintering time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The carrier compensation effect caused by the remaining acceptor impurities (Al, etc.) in the obtained -SiC had a deleterious influence on the electrical conductivity. The absolute value of the Seebeck coefficient increased with increasing sintering time, which might be due to a decrease in the stacking fault density accompanied by grain or crystallite growth. On the other hand, the power factor, which reflects the thermoelectric conversion efficiency of the present work, was slightly lower than that of the porous SiC semiconductors fabricated by conventional high-purity -SiC powder, it can be stated that the thermoelectric properties could be improved further by precise control of an acid-treatment process.

Evaluation of High Absorption Photoconductor for Application to Auto Exposure Control Sensor by Screen Printing Method (자동노출제어장치 센서적용을 위한 스크린 프린팅 제작방식의 고흡수율 광도전체 특성평가)

  • Kim, Dae-Kuk;Kim, Kyo-Tae;Park, Jeong-Eun;Hong, Ju-Yeon;Kim, Jin-Seon;Oh, Kyung-Min;Nam, Sang-Hee
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • In diagnostic radiology, the use of automatic exposure control device is internationally recommended for diagnosis and optimization. However, if exposed to prolonged radiation is a complicated manufacturing process, there is a problem that occurs decrease of various performance overall brightness sensor, which is commercially available conventional. Therefore, in this study, absorption of X-ray is high, and I want to evaluate the AEC applicability of the sensor of the photoconductor-based production has an easy advantage. Experimental results confirms the possibility of fabrication of the sensor through an increase in the SNR, with the detection efficiency superior, accurate turn-off. In addition, it is confirmed that the experimental results of the transmittance and the latent image, Ghost effect by the light conductor does not appear, in the case of a photoconductor with the exception of the PbO, 80% - and it was confirmed good transmittance of 90%. Therefore, excellent mechanical stability and poor performance due to a change of the doping concentration than the existing products that have been put to practical use, the sensor easy photoconductor based, fabrication and can be applied as AEC sensor is expected.

Enhancement of PTCR Characteristics of MnO2 Doped Lead Free BaTiO3-(Bi0.5Na0.5)TiO3 Ceramics with High Tc (>165℃) (MnO2가 도핑된 무연 High Tc (>165℃) BaTiO3-(Bi0.5Na0.5)TiO3 세라믹의 PTCR 특성 향상)

  • Kim, Kyoung-Bum;Jang, Young-Ho;Kim, Chang-Il;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo;Lee, Woo-Young;Kim, Dae-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.723-727
    • /
    • 2011
  • 0.935Ba$TiO_3$-0.065($Bi_{0.5}Na_{0.5}$)$TiO_3+xmol%MnO_2$ (BBNTM-x) ceramics with $0{\leq}x{\leq}0.05$ were fabricated with muffled sintering by a modified synthesis process. Their microstructure and enhanced positive temperature coefficient of resistivity (PTCR) characteristics were systematically investigated in order to obtain lead-free high TC PTCR thermistors. All specimens showed a perovskite structure with a tetragonal symmetry and no secondary phase was observed. Grain growth was achieved when the doped MnO2 was increased above 0.02 mol%. This is due to the effect of positive Mn ion doping as an acceptor compensating a Ba vacancy occurred by the higher donor dopant concentration of $Bi^{3+}$ ion. Especially, enhanced PTCR characteristics of the extremely low ${\rho}_{RT}$ of $9\;{\Omega}{\cdot}cm$, PTCR jump of $5.1{\times}10^3$, ${\alpha}$ of 15.5%/$^{\circ}C$ and high $T_C$ of $167^{\circ}C$ were achieved for the BBNTM-0.04 ceramics.

Preparation of pseudo n-type Polyaniline and Evaluation of Electrochemical Properties (가상 n형 폴리아닐린의 제조 및 전기화학적 특성평가)

  • 김래현;최선용;정건용
    • Membrane Journal
    • /
    • v.13 no.3
    • /
    • pp.162-173
    • /
    • 2003
  • The pseudo n-type polyaniline was prepared by doping of camphorsulfonic acid(CSA) and dodecylbenzenesulfonic acid(DBSA) as the dopants in solvent of N-methyl-2-pyrrolidinone(NMP). The dopants in polymer structure was qualitatively analyzed using FT-IR. The influence on electrochemical properties with dopant concentration of PANI film were investigated. The electrochemical characteristics of the n-type PANI electrode that coated on ITO were evaluated by cyclic voltammetry(CV) and AC impedance method. The prepared PANI were confirmed as n-type PANI from FT-IR and CV. The charge transfer resistance of film on PANI/CSA electrode were measured as 1.14{\sim}1.09k{\mu}$by AC impedance. The charge transfer resistance of PANI/DBSA electrode decreased with increasing the mole ratio of DBSA as 27.73{\sim}8.37 k{\mu}$. The double layer capacitance of PANI/CSA electrode was showed almost constant value as $13.47{\sim}14.59 {\mu}F$ and that of PANI/DBSA electrode increased with increasing mole ratio of DBSA from 0.49 to $1.20 {\mu}F$.

Photoemission Electron Micro-spectroscopic Study of the Conductive Layer of a CVD Diamond (001)$2{\times}1$ Surface

  • Kono, S.;Saitou, T.;Kawata, H.;Goto, T.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.7-8
    • /
    • 2010
  • The surface conductive layer (SCL) of chemical vapor deposition (CVD) diamonds has attracting much interest. However, neither photoemission electron microscopic (PEEM) nor micro-spectroscopic (PEEMS) information is available so far. Since SCL retains in an ultra-high vacuum (UHV) condition, PEEM or PEEMS study will give an insight of SCL, which is the subject of the present study. The sample was made on a Ib-type HTHP diamond (001) substrate by non-doping CVD growthin a DC-plasma deposition chamber. The SCL properties of the sample in air were; a few tens K/Sq. in sheet resistance, ${\sim}180\;cm^2/vs$ in Hall mobility, ${\sim}2{\times}10^{12}/cm^2$ in carrier concentration. The root-square-mean surface roughness (Rq) of the sample was ~0.2nm as checked by AFM. A $2{\times}1$ LEED pattern and a sheet resistance of several hundreds K/Sq. in UHV were checked in a UHV chamber with an in-situ resist-meter [1]. The sample was then installed in a commercial PEEM/S apparatus (Omicron FOCUS IS-PEEM) which was composed of electro-static-lens optics together with an electron energy-analyzer. The presence of SCL was regularly monitored by measuring resistance between two electrodes (colloidal graphite) pasted on the two ends of sample surface. Figure 1 shows two PEEM images of a same area of the sample; a) is excited with a Hg-lamp and b) with a Xe-lamp. The maximum photon energy of the Hg-lamp is ~4.9 eV which is smaller that the band gap energy ($E_G=5.5\;eV$) of diamond and the maximum photon energy of the Xe-lamp is ~6.2 eV which is larger than $E_G$. The image that appear with the Hg-lamp can be due to photo-excitation to unoccupied states of the hydrogen-terminated negative electron affinity (NEA) diamond surface [2]. Secondary electron energy distribution of the white background of Figs.1a) and b) indeed shows that the whole surface is NEA except a large black dot on the upper center. However, Figs.1a) and 1b) show several features that are qualitatively different from each other. Some of the differences are the followings: the two main dark lines A and B in Fig.1b) are not at all obvious and the white lines B and C in Fig.1b) appear to be dark lines in Fig.1a). A PEEMS analysis of secondary electron energy distribution showed that all of the features A-D have negative electron affinity with marginal differences among them. These differences can be attributed to differences in the details of energy band bending underneath the surface present in SCL [3].

  • PDF

The Effect of the Deposition Temperature and la Doping Concentration on the Properties of the (Pb, La)$\textrm{TiO}_3$ Films Deposited by ECR PECVD (증착온도와 La조성비가 ECR 플라즈마 화학기상증착법으로 증착한 (Pb, La)$\textrm{TiO}_3$박막의 물성에 미치는 영향)

  • Jeong, Seong-Ung;Park, Hye-Ryeon;Lee, Won-Jong
    • Korean Journal of Materials Research
    • /
    • v.7 no.3
    • /
    • pp.196-202
    • /
    • 1997
  • Perovskite lanthanum doped lead titanate ($(Pb,La)TiO_{3}$ or PLT) thin films were successfully fabricated on Pt/TijSiO.iSi substrates at the temperatures as low as $440~500^{\circ}C$ by eleclron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR PECVII). Since the volatilities of the MC sources arid oxide molecules (especially Ph oxide) increased with increasing deposition temperature, the film deposition rate and the (I'b + La)/'Ti ratio decreased Stoichiometric perovskite PL'T films with good dielectric and leakeage current properties were obtained at the temperatures of $460~480^{\circ}C$. The lanthanum content of the film was nearly directly propotional to $La(DPM)_{3}$ flow rate. As the La/Ti ratio increased from 3.0 to 9.5%, the dielectric constant increased from 360 to 650 and the leakeage current density at 100kV/cm electric field decreased from $4{\times}10^{-5}$ to $4{\times}10_{-8}A/cm^2$.

  • PDF

Effect of Addition of Cosolvent γ-Butyrolactone on Morphology of Polysulfone Hollow Fiber Membranes (폴리설폰 중공사막 구조에 대한 조용매 γ-Butyrolactone 첨가 영향)

  • Yun, Sukbok;Lee, Yongtaek
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.274-280
    • /
    • 2014
  • Polysulfone (PSf) hollow fiber membranes were prepared via the nonsolvent induced phase separation technique. The cosolvent of ${\gamma}$-butyrolactone (GBL) was added to the polymer solution containing a mixture of PSf and N,N-dimethylacetamide (DMAc). Water was utilized as a precipitation nonsolvent. The morphology of prepared membranes was investigated using a field emission scanning electron microscopy. The fabricated membrane showed a typical asymmetric structure such as the dense layer on the porous support layer by the addition of GBL to the polymer solution. As the concentration of GBL increased, the asymmetric porous structure was shown to be more intensified. It was thought that the added GBL played a role of enhancing the liquid-liquid phase separation of the polymer solution, since the cosolvent of GBL might change the thermodynamic solubility parameter of the doping solution. Permeation properties through the prepared hollow fiber membranes were characterized by measuring the pure water flux and the solute rejection using $0.05{\mu}m$ polystyrene latex (PSL) beads. Experimental results revealed that the use of PEG as the internal coagulant enhanced the pure water flux up to 130 times compared to the use of EG while the rejection of the PSL beads decreased only 5%.

Simulation Study of a Large Area CMOS Image Sensor for X-ray DR Detector with Separate ROICs (센서-회로 분리형 엑스선 DR 검출기를 위한 대면적 CMOS 영상센서 모사 연구)

  • Kim, Myung Soo;Kim, Hyoungtak;Kang, Dong-uk;Yoo, Hyun Jun;Cho, Minsik;Lee, Dae Hee;Bae, Jun Hyung;Kim, Jongyul;Kim, Hyunduk;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • There are two methods to fabricate the readout electronic to a large-area CMOS image sensor (LACIS). One is to design and manufacture the sensor part and signal processing electronics in a single chip and the other is to integrate both parts with bump bonding or wire bonding after manufacturing both parts separately. The latter method has an advantage of the high yield because the optimized and specialized fabrication process can be chosen in designing and manufacturing each part. In this paper, LACIS chip, that is optimized design for the latter method of fabrication, is presented. The LACIS chip consists of a 3-TR pixel photodiode array, row driver (or called as a gate driver) circuit, and bonding pads to the external readout ICs. Among 4 types of the photodiode structure available in a standard CMOS process, $N_{photo}/P_{epi}$ type photodiode showed the highest quantum efficiency in the simulation study, though it requires one additional mask to control the doping concentration of $N_{photo}$ layer. The optimized channel widths and lengths of 3 pixel transistors are also determined by simulation. The select transistor is not significantly affected by channel length and width. But source follower transistor is strongly influenced by length and width. In row driver, to reduce signal time delay by high capacitance at output node, three stage inverter drivers are used. And channel width of the inverter driver increases gradually in each step. The sensor has very long metal wire that is about 170 mm. The repeater consisted of inverters is applied proper amount of pixel rows. It can help to reduce the long metal-line delay.