• Title/Summary/Keyword: Doping Rate

Search Result 212, Processing Time 0.023 seconds

Impact ionization rate of the highly-doped AlGaAs/GaAs quantum well (고준위 도핑된 AlGaAs/GaAs 양자 우물의 충돌 이온화율)

  • 윤기정;황성범;송정근;홍창희
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.4
    • /
    • pp.121-128
    • /
    • 1996
  • The impact ionization rate of thethighly-doped AlGaAs/GaAs quantum well structure is calculated, which is an important parameter ot design theinfrared detector APD and the novel neural device. In conjunction with ensemble monte carlo method and quantum mechanical treatment, we analyze the effects of the parameters of quantum well structure on the impact ionization rate. Since the number of the occupied subbands increases while the energy of the subbands decreases as the width of quantum well increases, the impact ionization rate increases in the range of th esmall well width but gradually the increament slows down and is finally saturated. Due to the effect of the energy of the injected electrons into the quantum well and the tunneling through the barrier, the impact ionization rate increases for the range of the small barrier width and decreases for the range of the large barrier width. Thus, there exists a barrier width to maximize the impact ionzation rate for a mole fraction x, and the barrier width moves to the larger vaue as the mole fraction x increases. The impact ionization rate is much more sensitive to the variation of the doping density than that of the other quantum well parameters. We found that there is a limit of the doping density to confine the electronics in the quantum well effectively.

  • PDF

The study of Na Doping rate for application CsI:Na in the amorphous selenium (비정질 셀레늄 기반에서 CsI:Na 응용을 위한 Na의 조성비 연구)

  • Cha, Byung-Youl;Park, Ji-Koon;Kang, Sang-Sik;Lee, Kyu-Hong;Nam, Sang-Hee;Choi, Heung-Kook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.412-414
    • /
    • 2003
  • This paper is about research of scintillator layer, which is used for Hybrid method to increase electric signals in a-Se, the material of Direct method. In case of the thermal evaporation, CsI has column structure which is an disadvantage as scintillator. But it decreases scattering of incident X-ray, has better Light output intensity than other scintillation materials. CsI was made by Thermal evaporation. The Doping material, Na, 0.1, 0.3, 0.5, 0.7g were added in each sample. Analysis of absorbed wavelength, PL(Photoluminescence), Light output intensity, SEM, and XRD analysis were performed to analyze optical characteristics. Doping rate of CsI:Na to use as scintillation layer in a-Se based detector could be optimized.

  • PDF

DESIGN OF A NEUTRON SCREEN FOR 6-INCH NEUTRON TRANSMUTATION DOPING IN HANARO

  • Kim, Hak-Sung;Oh, Soo-Youl;Jun, Byung-Jin;Kim, Myong-Seop;Seo, Chul-Gyo;Kim, Heon-Il
    • Nuclear Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.675-680
    • /
    • 2006
  • The neutron transmutation doping of silicon (NTD), as a method to produce a high quality semiconductor, utilizes the transmutation of a silicon element into phosphorus by neutron absorption in a silicon single crystal. In this paper, we present the design of a neutron screen for a 6' Si ingot irradiation in the NTD2 hole of HANARO. The goal of the design is to achieve an even flat axial distribution of the resistivity, or $Si^{30}(n,{\gamma})Si^{31}$ reaction rate, in the irradiated Si ingot. We used the MCNP4C code to simulate the neutron screen and to calculate the reaction rate distribution in the Si ingot. The fluctuations in the axial distribution were estimated to be within ${\pm}2.0%$ from the average for the final neutron screen design; thus, they satisfy the customers' requirement for uniform irradiation. On the other hand, we determined the optimal insertion depths of the Si ingots by varying the critical control rod position, which greatly affects the axial flux distribution.

OMVPE and Plasma-Assisted Doping of ZnSe with Dimethlzinc:triethylamine Adduct Source

  • Huh, Jeung-Soo;Lim, Jeong-Ok
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.55-60
    • /
    • 1996
  • The growth and microwave plasma assisted nitrogen doping of ZnSe by low pressure organometallic vapor phase epitaxy(OMVPE) has been investigated in a vertical downflow reactor equipped with a laser interferometer for in-situ growth rate measurements. Particular emphasis is placed on understanding growth characteristics of $H_{2}Se$ and the new adduct source dimethylzinc:triethyllamine($DMZn:NEt_{3}$) as compared with those obtained with $H_{2}Se$ and DMZn. At lower temperatures ($<300^{\circ}C$) and pressures(<30Torr), growth rates are higher with the adduct source and the surface morphology is improved relative to films synthesized with DMZn. Hall measurements and photoluminescence spectra of the grown films demonstrate that DMZn and $DMZn:NEt_{3}$ produce material with comparable electronic and optical properties. Microwave plasma decomposition of ammonia is investigated as a possible approach to increasing nitrogen incorporation in ZnSe and photoluminescence spectra are compared to those realized with conventional ammonia doping.

  • PDF

The Effect of Y Doping on Electrochemical Behavior of Spherical $Li_4Ti_5O_{12}$ for Li-ion Batteries

  • Ji, Mi-Jeong;Choe, Byeong-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.31.1-31.1
    • /
    • 2011
  • $Li_4Ti_5O_{12}$ is emerging as a promising material with its good structure stability and little volume change during the electrochemical reaction. However, its electrochemical performance is significantly limited by low electronic or ionic conductivity. In addition, high tap density is needed forim proving its volumetric energy density and commercialization. To enhance these properties, the spherical-like $Li_4Ti_5O_{12}$ particles were synthesized and carried out doping with yttrium. Prepared Y-doped $Li_4Ti_5O_{12}$ as a anode material showed great capacity retention rate of 92% (5C/0.2C), compared with no dope done. Consequently, it was found that Y doping into $Li_4Ti_5O_{12}$ matrix reduces the polarization and resistance on SEI layer during the electrochemical reaction.

  • PDF

Lithium Diffusivity of Tin-based Film Model Electrodes for Lithium-ion Batteries

  • Hong, Sukhyun;Jo, Hyuntak;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.116-120
    • /
    • 2015
  • Lithium diffusivity of fluorine-free and -doped tin-nickel (Sn-Ni) film model electrodes with improved interfacial (solid electrolyte interphase (SEI)) stability has been determined, utilizing variable rate cyclic voltammetry (CV). The method for interfacial stabilization comprises fluorine-doping on the electrode together with the use of electrolyte including fluorinated ethylene carbonate (FEC) solvent and trimethyl phosphite additive. It is found that lithium diffusivity of Sn is largely dependent on the fluorine-doping on the Sn-Ni electrode and interfacial stability. Lithium diffusivity of fluorine-doped electrode is one order higher than that of fluorine-free electrode, which is ascribed to the enhanced electrical conductivity and interfacial stabilization effect.

Analysis of Subthreshold Swing for Channel Doping of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 채널도핑에 따른 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.651-656
    • /
    • 2014
  • This paper analyzed the change of subthreshold swing for channel doping of asymmetric double gate(DG) MOSFET. The subthreshold swing is the factor to describe the decreasing rate of off current in the subthreshold region, and plays a very important role in application of digital circuits. Poisson's equation was used to analyze the subthreshold swing for asymmetric DGMOSFET. Asymmetric DGMOSFET could be fabricated with the different top and bottom gate oxide thickness and bias voltage unlike symmetric DGMOSFET. It is investigated in this paper how the doping in channel, gate oxide thickness and gate bias voltages for asymmetric DGMOSFET influenced on subthreshold swing. Gaussian function had been used as doping distribution in solving the Poisson's equation, and the change of subthreshold swing was observed for projected range and standard projected deviation used as parameters of Gaussian distribution. Resultly, the subthreshold swing was greatly changed for doping concentration and profiles, and gate oxide thickness and bias voltage had a big impact on subthreshold swing.

Effect of Nitrogen, Titanium, and Yttrium Doping on High-K Materials as Charge Storage Layer

  • Cui, Ziyang;Xin, Dongxu;Park, Jinsu;Kim, Jaemin;Agrawal, Khushabu;Cho, Eun-Chel;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.445-449
    • /
    • 2020
  • Non-volatile memory is approaching its fundamental limits with the Si3N4 storage layer, necessitating the use of alternative materials to achieve a higher programming/erasing speed, larger storage window, and better data retention at lower operating voltage. This limitation has restricted the development of the charge-trap memory, but can be addressed by using high-k dielectrics. The paper reviews the doping of nitrogen, titanium, and yttrium on high-k dielectrics as a storage layer by comparing MONOS devices with different storage layers. The results show that nitrogen doping increases the storage window of the Gd2O3 storage layer and improves its charge retention. Titanium doping can increase the charge capture rate of HfO2 storage layer. Yttrium doping increases the storage window of the BaTiO3 storage layer and improves its fatigue characteristics. Parameters such as the dielectric constant, leakage current, and speed of the memory device can be controlled by maintaining a suitable amount of external impurities in the device.

Effect of Single and Dual Doping of Rare Earth Metal Ce and Nd Elements on Electrochemical Properties of LiNi0.83 Co0.11Mn0.06O2Cathode Lithium-ion Battery Material (리튬이온전지용 양극활물질 LiNi0.83 Co0.11Mn0.06O2의 전기화학적 특성에 미치는 Ce와 Nd 희토류 금속의 단독 혹은 이중 도핑효과)

  • Kim, Yoo-Young;Ha, Jong-Keun;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.26 no.1
    • /
    • pp.49-57
    • /
    • 2019
  • Layered $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode materials single- and dual-doped by the rare-earth elements Ce and Nd are successfully fabricated by using a coprecipitation-assisted solid-phase method. For comparison purposes, non-doping pristine $LiNi_{0.83}Co_{0.11}Mn_{0.06}O_2$ cathode material is also prepared using the same method. The crystal structure, morphology, and electrochemical performances are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) mapping, and electrochemical techniques. The XRD data demonstrates that all prepared samples maintain a typical ${\alpha}-NaFeO_2$-layered structure with the R-3m space group, and that the doped samples with Ce and/or Nd have lower cation mixing than that of pristine samples without doping. The results of SEM and EDS show that doped elements are uniformly distributed in all samples. The electrochemical performances of all doped samples are better than those of pristine samples without doping. In addition, the Ce/Nd dual-doped cathode material shows the best cycling performance and the least capacity loss. At a 10 C-rate, the electrodes of Ce/Nd dual-doped cathode material exhibit good capacity retention of 72.7, 58.5, and 45.2% after 100, 200, and 300 cycles, respectively, compared to those of pristine samples without doping (24.4, 11.1, and 8.0%).

Influence of Sn/Bi doping on the phase change characteristics of $Ge_2Sb_2Te_5$

  • Park T.J.;Kang M.J.;Choi S.Y.
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.1
    • /
    • pp.93-98
    • /
    • 2005
  • Rewritable optical disk is one of the essential data storage media in these days, which takes advantage of the different optical properties in the amorphous and crystalline states of phase change materials. As well known, data transfer rate is one of the most important parameter of the phase change optical disks, which is mostly limited by the crystallization speed of recording media. Therefore, we doped Sn/Bi to $Ge_2Sb_2Te_5$ alloy in order to improve the crystallization speed and investigated the dependence of phase change characteristics on Sn/Bi doping concentration. The Sn/Bi doped $Ge_2Sb_2Te_5$ thin film was deposited by RF magnetron co-sputtering system and phase change characteristics were investigated by X-ray diffraction (XRD), static tester, UV-visible spectrophotometer, electron probe microanalysis (EPMA), inductively coupled plasma mass spectrometer (ICP-MS) and atomic force microscopy (AFM). Optimum doping concentration of Bi and Sn were 5${\~}$6 at.$\%$ and the minimum time for crystallization was below than 20 ns. This improvement is correlated with the simple crystalline structure of Sn/Bi doped $Ge_2Sb_2Te_5$ and the reduced activation barrier arising from Sn/Bi doping. The results indicate that Sn/Bi might play an important role in the transformation kinetics of phase change materials..

  • PDF