• Title/Summary/Keyword: Doping Rate

Search Result 210, Processing Time 0.034 seconds

A Study on the High Frequency Properties of Mn-Zn ferrite with Re2O3(R=Dy, Gd, Ho) Addition (Re2O3(R=Dy, Gd, Ho)첨가에 따른 Mn-Zn ferrite의 고주파 특성에 관한 연구)

  • 최우성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.6
    • /
    • pp.538-548
    • /
    • 2003
  • We studied effects by Re$_2$O$_3$(R=Dy, Gd, Ho) addition on the properties of Mn-Zn ferrite. The doping concentration range from 0.05 wt% to 0.25 wt%. All samples were prepared by standard fabrication of ceramics. With increasing the rare earth oxides, specific density and initial permeability increased on the whole. But, the tendencies such as upper result had the measured value on limitation and characteristics saturated or decreased properties after that. In case of excessive addition of additive beyond some level, initial permeability properties of ferrite have gone down in spite of anomalous grain. With increasing the content of additive, both the real and imaginary component of complex permeability and the magnetic loss (tan$\delta$) increased. Because the increased rate of real component had higher than imaginary component, magnetic loss increased none the less for increasing the real component related with magnetic permeability. But, the magnetic loss of ferrite doped with the rare earth oxides was lower than that of Mn-Zn ferrite at any rate. The small amount of present rare earth oxides in Mn-Zn ferrite composition led to enhancement of resistivity in bulk, and more so in the grain boundary. It was seem to be due to the formation of mutual reaction such as between iron ions and rare earth element ions.

The Physical Characteristics and Preparation of $Mg_2SiO_4(La.Ho)$ Thermoluminescent Phosphor ($Mg_2SiO_4(La.Ho)$열형광체의 제작과 물리적 특성)

  • Noh, Kyung-Suk;Song, Jae-Heung;Koo, Hyo-Geun;Lee, Deog-Kyu
    • Journal of radiological science and technology
    • /
    • v.20 no.1
    • /
    • pp.65-69
    • /
    • 1997
  • [ $Mg_2SiO_4(La.Ho)$ ] thermoluminescent phosphor was made by putting the $MgCl_2.6H_2O$ and $SiO_2$ and by doping the rare earth element of $LaCl_3.7H_2O$ and $HoCl_3$. The heating rate is $10^{\circ}C/sec$ for the thermoluminescent phosphor. Two peaks are found in the measured $Mg_2SiO_4(La.Ho)$ Tl glow curve at $152^{\circ}C$ and $205^{\circ}C$ when the heating rate is $5^{\circ}C/sec$. The peak value at $205^{\circ}C$ is the most sensitive to X-ray among the glow peaks. The activation energy of the main peak has been estimated by the peak shape method. The estimated activation energies for Ho and La are $0.52{\sim}1.77\;eV$ respectively.

  • PDF

Deposition of B-doped ZnO Thin Films by Plasma Enhanced Chemical Vapor Deposition (플라즈마 화학기상 증착법에 의한 B이 첨가된 ZnO 박막의 증착에 관한 연구)

  • Choe, Jun-Yeong;Jo, Hae-Seok;Kim, Yeong-Jin;Lee, Yong-Ui;Kim, Hyeon-Jun
    • Korean Journal of Materials Research
    • /
    • v.5 no.5
    • /
    • pp.568-574
    • /
    • 1995
  • We investigated the effects of B-doping on the growth mechanism of ZnO films. The B-doped ZnO films, which were widely applied for transparent conducting electrode, were deposited by plasma enhanced chemcial vapor depostion(PECVD) using diethylzinc(DEZ), No.sub 2/. and B$_{2}$H$_{6}$. The deposition conditions were a sbustrate temperature of 30$0^{\circ}C$, an rf power of 200, and a chamber pressure of 1 torr. At the given depostion condition, the growth rate of B-doped ZnO thin films was higher than that of undoped ones, but didn't change even with further increasing B$_{2}$H$_{6}$ flow rate and the interplanar distance between(0002) planes was reduced as B atoms substituted Zn sites.s.

  • PDF

Prediction of Lithium Diffusion Coefficient and Rate Performance by using the Discharge Curves of LiFePO4 Materials

  • Yu, Seung-Ho;Park, Chang-Kyoo;Jang, Ho;Shin, Chee-Burm;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.852-856
    • /
    • 2011
  • The lithium ion diffusion coefficients of bare, carbon-coated and Cr-doped $LiFePO_4$ were obtained by fitting the discharge curves of each half cell with Li metal anode. Diffusion losses at discharge curves were acquired with experiment data and fitted to equations. Theoretically fitted equations showed good agreement with experimental results. Moreover, theoretical equations are able to predict lithium diffusion coefficient and discharge curves at various discharge rates. The obtained diffusion coefficients were similar to the true diffusion coefficient of phase transformation electrodes. Lithium ion diffusion is one of main factors that determine voltage drop in a half cell with $LiFePO_4$ cathode and Li metal anode. The high diffusion coefficient of carbon-coated and Cr-doped $LiFePO_4$ resulted in better performance at the discharge process. The performance at high discharge rate was improved much as diffusion coefficient increased.

Structural and optical properties of Ga-doped ZnO nanowires synthesized by pulsed laser deposition in furnace (갈륨 도핑된 ZnO 나노와이어의 합성과 구조적 광학적 특성 분석)

  • Kim, Chang-Eun;Ahn, Byung-Du;Jean, Kyung-Ah;Son, Hyo-Jeong;Kim, Gun-Hee;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.46-47
    • /
    • 2006
  • Ga-doped ZnO nanowires have been synthesized by pulsed laser deposition (PLD) in furnace on gold coated (0001) sapphire substrates. The effect of repetition rate on structural and optical properties of Ga-doped ZnO nanowires are investigated. By controlling repetition rate, the diameter of nanowires is varied between about 60 and 100 nm, and the length of nanowires is varied between about 2 and 4 um. The X-ray diffraction (XRD) reveals the structural defects induced by the Ga doping. The room temperature photoluminescence (PL) spectra of Ga-doped ZnO nanowires show strong UV emission between 382.394 and 385.279 nm with negligible visible emission.

  • PDF

Aqueous-deposited CdS Thin Films for Photovoltaic Application (용액증착법에 의한 광전성 CdS 박막제조)

  • 신재혁
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.161-164
    • /
    • 1997
  • Thin films of CdS were prepared from an aqueous solution containing Cd(Ac)$_2$, NH$_4$OH, NH$_4$Ac and (NH$_2$)$_2$CS for photovoltaic application. Growth rate of CdS films was increased with increasing temperature of reactive solution and with decreasing concentration of NH$_4$OH. Optical transmittances were more than 60%, independent with temperature and concentrations, and were changed with thickness of CdS films. Growth films mostly showed the presence of polycrystallines with mixed cubic and condition. The resistivities of CdS were decreased by doping boron and criticial amount of dopant was determined.

  • PDF

Red-shift of the photoluminescence peak of N-doped ZnO phosphors

  • Kim, Jun-Kwan;Lim, Jung-Wook;Kim, Hyun-Tak;Yun, Sun-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.895-897
    • /
    • 2008
  • ZnO films were fabricated using rf-magnetron sputter deposition process with different $N_2$ ambient. N-content in N-doped ZnO films was less than 1%. The wavelength of the highest intensity PL peak of N-doped ZnO was shifted to higher wavelength with increasing $N_2$ flow rate in the deposition ambient. These results indicated that the optical property of ZnO was significantly affected by the defect level created by doping with a very small amount of N.

  • PDF

Effect of Mo-doped LiFePO4 Positive Electrode Material for Lithium Batteries

  • Oh, Seung-Min;Sun, Yang-Kook
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.4
    • /
    • pp.172-177
    • /
    • 2012
  • Mo-doped $LiFePO_4$ was synthesized via co-precipitation method using sucrose as the carbon source. Structure, surface morphology, and the electrochemical properties of the synthesized olivine compounds were investigated using Rietveld refinement of X-ray diffraction data (XRD), scanning electron microscopy (SEM), and electrochemical charge-ischarge tests. Spherical morphology with the particle size of ${\sim}8{\mu}m$ authenticated the enhanced tap density and volumetric energy density of the synthesized materials. Charge-discharge behavior of $LiFePO_4$ and Mo-doped $LiFePO_4$ cells demonstrated a specific capacity of 130 and 145 mAh $g^{-1}$, respectively. Mo-doped $LiFePO_4$ cells exhibited an excellent discharge capacity at 96 mAh $g^{-1}$ at 7 C-rate.

Preparation of Boron Doped Fullerene Film by a Thermal Evaporation Technique using Argon Plasma Treatment and Its Electrochemical Application

  • Arie, Arenst Andreas;Jeon, Bup-Ju;Lee, Joong-Kee
    • Carbon letters
    • /
    • v.11 no.2
    • /
    • pp.127-130
    • /
    • 2010
  • Boron doped fullerene $C_{60}$ ($B:C_{60}$) films were prepared by the thermal evaporation of $C_{60}$ powder using argon plasma treatment. The morphology and structural characteristics of the thin films were investigated by scanning electron microscope (SEM), Fourier transform infra-red spectroscopy (FTIR) and x-ray photo electron spectroscopy (XPS). The electrochemical application of the boron doped fullerene film as a coating layer for silicon anodes in lithium ion batteries was also investigated. Cyclic voltammetry (CV) measurements were applied to the $B:C_{60}$ coated silicon electrodes at a scan rate of $0.05\;mVs^{-1}$. The CV results show that the $B:C_{60}$ coating layer act as a passivation layer with respect to the insertion and extraction of lithium ions into the silicon film electrode.

Electrical and optical characteristics of porous 3C-SiC thin films with dopants (도핑량에 따른 다공성 3C-SiC 박막의 전기 및 광학적 특성)

  • Kim, Kan-San;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.27-27
    • /
    • 2010
  • This paper describes the electrical and optical characteristics of $N_2$ doped porous 3C-SiC films. Average pore diameter is about 30 nm and etched area was increased with $N_2$ doping rate. The mobility was dramatically decreased in porous 3C-SiC. The band gaps of polycrystalline 3C-SiC films and doped porous 3C-SiC were 2.5 eV and 2.7 eV, respectively.

  • PDF