• Title/Summary/Keyword: Doped metal oxide

Search Result 143, Processing Time 0.028 seconds

Effects of the Ag Layer Embedded in NIZO Layers as Transparent Conducting Electrodes for Liquid Crystal Displays

  • Oh, Byeong-Yun;Heo, Gi-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.1
    • /
    • pp.33-36
    • /
    • 2016
  • In the present work, a Ni-doped indium zinc oxide (NIZO) film and its multilayers with Ag layers were investigated as transparent conducting electrodes for liquid crystal display (LCD) applications, as a substitute for indium tin oxide (ITO) electrodes. By interposing the Ag layer between the NIZO layers, the loss of the optical transmittance occurred; however, the Ag layer brought enhancement of electrical sheet resistance to the NIZO/Ag/NIZO multilayer electrode. The twisted nematic cell based on the NIZO/Ag/NIZO multilayer electrode exhibited superior electro-optical characteristics than those based on single NIZO electrode and was competitive compared to those based on the conventional ITO electrode. An LCD-based NIZO/Ag/NIZO multilayer electrode may allow new approaches to conventional ITO electrodes in display technology.

Photocatalytic Decomposition of Methyl Orange over Alkali Metal Doped LaCoO3 Oxides (알칼리족 금속이 첨가된 LaCoO3 산화물에서 메틸 오렌지의 광촉매분해 반응)

  • Hong, Seong-Soo
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.718-722
    • /
    • 2017
  • We have investigated the photocatalytic activity for the decomposition of methyl orange on the pure $LaCoO_3$ and metal ion doped $LaCoO_3$ perovskite-typeoxides prepared using microwave process. In the case of pure $LaCoO_3$ and cesium ion doped $LaCoO_3$ catalysts, the formation of the perovskite crystalline phase was confirmed regardless of the preparation method. From the results of UV-Vis DRS, the pure $LaCoO_3$ and cesium ion doped $LaCoO_3$ catalysts have the similar absorption spectrum up to visible region. The chemisorbed oxygen plays an important role on the photocatalytic decomposition of methyl orange and the higher the contents of chemisorbed oxygen, the better performance of photocatalyst.

Synthesis of Metal Doped ZnO Nanoclusters by Microwave Assisted Polyol Process (마이크로웨이브 폴리올 공정에서 금속 도핑 산화아연 나노클러스터의 합성)

  • Kwon, Oh-San;Kang, Kuk-Hyoun;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.525-533
    • /
    • 2014
  • ZnO has attracted much attention such as photocatalysts, sensors, piezoelectricity and etc. At present, an economical and rapid synthesis route based on the efficient microwave polyol process is used to synthesized metal-doped ZnO nanoclusters. Diethylene glycol has a property of high polarizability, and is an excellent microwave absorbing agent, thus leading to a high heating rate and a significantly shorter reaction time. In this study, metal-doped ZnO nanoclusters are obtained with different seed volumes, when zinc acetate dihydrate is used as a precursor, and metal acetate hydrate is used as a doped-metal and diethylene glycol is used as a solvent. The obtained metal-doped ZnO nanoclusters were characterized by FE-SEM, XRD, Raman and PSA.

Flexible, Tunable, and High Capacity Ultracapacitor using Nitron-Doped Graphene (질소가 도핑된 그라핀을 이용한 고용량의 조절이 가능한 플렉서블 울트라커페시터)

  • Jeong, Hyung Mo;Shin, Weon Ho;Choi, Yoon Jeong;Kang, Jeung Ku;Choi, Jang Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • We developed a simple method to synthesis a nitrogen doped graphene, nitrogen plasma treated graphene (NPG) sheets thought nitrogen plasma etching of graphene oxide (GO). X-ray photo electron spectroscopy (XPS) study of NPG sheets treated at various plasma conditions reveal that N-doping is classified to 3 kinds of binding configurations. The nitrogen doping concentration is at least 1.5 at % and up to 3 at% with changing of ratio of nitrogen configuration in NPG. Our group demonstrate ultracapacitor with high capacity and extremely durable using a NPG sheets that are comparable to pristine graphene supercapacitor, and pseudocapacitor using polymer and metal oxide with redox reaction, capacitance that are three-times higher, and a cycle life that are extremely stable. We also realized flexible capacitor by using the paper electrode that are coated by NPG sheets. NPG paper capacitor presented almost same performance compare with NPG on a metal substrate, and durability is much more enhanced than that. To additionally explain that how different kind of atoms in graphene layers can act as the ion absorption sites, we simulated the binding energy between nitrogen in graphene layer and ions in electrolyte. Increasing the energy density and long cycle life of ultracapacitor will enable them to compete with batteries and conventional capacitors in number of applications.

  • PDF

Simple Route to High-performance and Solution-processed ZnO Thin Film Transistors Using Alkali Metal Doping

  • Kim, Yeon-Sang;Park, Si-Yun;Kim, Gyeong-Jun;Im, Geon-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.187-187
    • /
    • 2012
  • Solution-processed metal-alloy oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO) has been extensively researched due to their high electron mobility, environmental stability, optical transparency, and solution-processibility. In spite of their excellent material properties, however, there remains a challenging problem for utilizing IZO or IGZO in electronic devices: the supply shortage of indium (In). The cost of indium is high, what is more, indium is becoming more expensive and scarce and thus strategically important. Therefore, developing an alternative route to improve carrier mobility of solution-processable ZnO is critical and essential. Here, we introduce a simple route to achieve high-performance and low-temperature solution-processed ZnO thin film transistors (TFTs) by employing alkali-metal doping such as Li, Na, K or Rb. Li-doped ZnO TFTs exhibited excellent device performance with a field-effect mobility of $7.3cm^2{\cdot}V-1{\cdot}s-1$ and an on/off current ratio of more than 107. Also, in case of higher drain voltage operation (VD=60V), the field effect mobility increased up to $11.45cm^2{\cdot}V-1{\cdot}s-1$. These all alkali metal doped ZnO TFTs were fabricated at maximum process temperature as low as $300^{\circ}C$. Moreover, low-voltage operating ZnO TFTs was fabricated with the ion gel gate dielectrics. The ultra high capacitance of the ion gel gate dielectrics allowed high on-current operation at low voltage. These devices also showed excellent operational stability.

  • PDF

Switching Dynamics Analysis by Various Models of Hf0.5Zr0.5O2 Ferroelectric Thin Films (Hf0.5Zr0.5O2 강유전체 박막의 다양한 분극 스위칭 모델에 의한 동역학 분석)

  • Ahn, Seung-Eon
    • Korean Journal of Materials Research
    • /
    • v.30 no.2
    • /
    • pp.99-104
    • /
    • 2020
  • Recent discoveries of ferroelectric properties in ultrathin doped hafnium oxide (HfO2) have led to the expectation that HfO2 could overcome the shortcomings of perovskite materials and be applied to electron devices such as Fe-Random access memory (RAM), ferroelectric tunnel junction (FTJ) and negative capacitance field effect transistor (NC-FET) device. As research on hafnium oxide ferroelectrics accelerates, several models to analyze the polarization switching characteristics of hafnium oxide ferroelectrics have been proposed from the domain or energy point of view. However, there is still a lack of in-depth consideration of models that can fully express the polarization switching properties of ferroelectrics. In this paper, a Zr-doped HfO2 thin film based metal-ferroelectric-metal (MFM) capacitor was implemented and the polarization switching dynamics, along with the ferroelectric characteristics, of the device were analyzed. In addition, a study was conducted to propose an applicable model of HfO2-based MFM capacitors by applying various ferroelectric switching characteristics models.

Fluorine and Heavy Metal Oxide Effects on Spectral Properties of Tm3+ in Silicate Glasses

  • Cho, Doo-Hee;Seo, Hong-Seok;Park, Bong-Je;Park, Yong-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.725-729
    • /
    • 2003
  • The fluorine doping along with heavy metal oxides remarkably raised the $^3$H$_4$ lifetime and the quantum efficiency in Tm$^{3+}$-doped silicate glasses. 29 mol% of fluorine substitution for oxygen in 70SiO$_2$-15Pbo-12ZnO-3KO$_{1}$2/ glass raised $^3$H$_4$ lifetime to 193 $mutextrm{s}$. Refractive indices were raised by heavy metal oxide substitution, but hardly changed by fluorine substitution. The fluorine doping changed the local structure around Tm$^{3+}$ions, then low energy vibrations related to fluorine are considered to largely reduce the multi-phonon relaxation rates in the oxyfluoride silicate glasses. The $^3$H$_4$ lifetimes and absorption and emission spectra of Tm$^{3+}$doped silicate and oxyfluoride silicate glasses are reported, and Judd-Ofelt calculation results are discussed in this paper.