• Title/Summary/Keyword: Doorway flow

Search Result 15, Processing Time 0.017 seconds

A Study on the Spatial Composition and Expressive Characteristics in Mass-Complex Commercial Space by Jerde Partnership's - Through Analyzing the Space Structure by Space Syntax - (저드 파트너쉽의 대규모 복합상업공간에서 나타나는 공간구성과 표현특성에 관한 연구 - 공간구문론에 의한 공간구조 분석을 통해서 -)

  • Kim, Yun-Jung;Jang, So-Eun;Park, Chan-Il
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.6
    • /
    • pp.188-196
    • /
    • 2010
  • The Commercial space are changed gradually large scalized and complexed to introduce different culture exchanges and experience. However, the mass-complex commercial space are limited as of their complexed space composition or degree of space depth, which may become factors causing people to get tired easily. Thus, having a design strategy is important to create economical effectiveness in order to overcome these limitations and for the people to stay longer and do their consumption activities through more experiences and social interchanges. Recently, Jerde Partnership's who designed many complex commercial spaces made a commercial success by their unique design strategy to setup a new space and lead the interaction between space and people. The purpose of this study is based on Jerd's design concept to analyze Jerd Partnership's design strategy and space related structure to propose their space construction and design method for mass-complex commercial spaces. The results are as follows. (1)Jerde Partnership's causes the abundant space experience of the user through mass and space constitution to have a theme and a story. (2)They builds an excursion type line of flow system with an organic curve, and a non-daily experience by the change of the space scale and the application of various programs is enabled and guides the stay for the long time. (3)They builds the doorway of various courses and a circulation system through the open space and controls depth of the space. In addition, various events are performed in the center of such a circulation system, and this event makes a unique place.

A Numerical Study for the Atrium Smoke Control by Fire Shutter and Evacuation (방화셔터를 이용한 아트리움 제연과 피난안전에 관한 수치해석 연구)

  • Jeon, Heung-Kyun;Choi, Young-Sang;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.50-59
    • /
    • 2010
  • Four fire scenarios, as the cases of fire sizes of 2 MW and 5 MW, and no installation and activation of atrium fire shutter for dormitory building of Daegu 'D college', were developed and fire simulations were run using FDS (ver. 5.5.0) and Pathfinder 2009 programs. By assessing fire and evacuation, the effects of atrium fire shutter and vents on the smoke control of atrium were evaluated and this study also analyzed fire hazard and egress safety for occupants in the dormitory. Fire shutter's preventing smoke transport around atrium was much effective, but smoke layer descended down the design limit of smoke height and kept about 2 m height from the atrium floor in all cases because flow rate through vents was not enough. For the case of 5 MW fire and no fire shutter, fire hazard was higher due to visibility than temperature and allowable egress time to stairwell was short less than 5 seconds for the occupants on the floors of 4F to 7F. For total occupants, egress time out of main doorway was calculated about 136 seconds. It is sure that additional systems improving the performance of smoke control need to be installed for more safe evacuation.

Effects of Change in Heat Release Rate on Unsteady Fire Characteristics in a Semi-Closed Compartment (반밀폐된 구획에서 발열량 변화에 따른 비정상 화재특성)

  • Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.75-83
    • /
    • 2012
  • An experimental study was conducted to investigate the effects of change in heat release rate on unsteady fire characteristics of under-ventilated fire in a semi-closed compartment. A standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time using a spray nozzle located at the center of enclosure. Temperature, heat flux, species concentrations and heat release rate were continuously measured and then global equivalence ratio (GER) concept was adopted to represent the unsteady thermal and chemical characteristics inside the compartment. It was observed that there was a significant difference in unsteady behavior between global and local combustion efficiency, and the GERs predicted by ideal and measured heat release rate were also shown different results in time. The unsteady behaviors of temperature, heat flux and species concentrations were represented well using the GER concept. It was important to note that CO concentration was gradually decreased with the increase in GER after reaching its maximum value in the range of 2.0~3.0 of global equivalence ratio. In addition, the experimental data on unsteady thermal and chemical behaviors obtained in a semi-closed compartment will be usefully used to validate a realistic fire simulation.

Performance Evaluation of FDS for Predicting the Unsteady Fire Characteristics in a Semi-Closed ISO 9705 Room (반밀폐된 ISO 9705 화재실에서 비정상 화재특성 예측을 위한 FDS의 성능평가)

  • Mun, Sun-Yeo;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.3
    • /
    • pp.21-28
    • /
    • 2012
  • The objective of this study is to evaluate the prediction accuracy of FDS(Fire Dynamic Simulator) for the thermal and chemical characteristics of under-ventilated fire with unsteady fire growth in a semi-closed compartment. To this end, a standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time (until maximum 2.0 MW based on ideal heat release rate) using a spray nozzle located at the center of enclosure. To verify the capability of FDS, the predicted results were compared with a previous experimental data under the identical fire conditions. It was observed that with an appropriate grid system, the numerically predicted temperature and heat flux inside the compartment showed reasonable agreement with the experimental data. On the other hand, there were considerable limitations to predict accurately the unsteady behaviors of CO and $CO_2$ concentration under the condition of continuous fire growth. These results leaded to a discrepancy between the present evaluation of FDS and the previous evaluation conducted for steady-state under-ventilated fires. It was important to note that the prediction of transient CO production characteristics using FDS was approached carefully for the under-ventilated fire in a semi-closed compartment.

Effects of Ventilation Condition on the Fire Characteristics in Compartment Fires (Part I: Performance Estimation of FDS) (구획화재에서 환기조건의 변화가 화재특성에 미치는 영향(Part I: FDS의 성능평가))

  • Hwang, Cheol-Hong;Park, Chung-Hwa;Ko, Gwon-Hyun;Lock, Andrew
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Experimental and numerical studies were conducted to investigate the thermal and chemical characteristics of heptane fires in a full-scale ISO 9705 room. Representative fire conditions were considered for over-ventilated fire (OVF) and under-ventilated fire (UVF). Fuel flow rate and doorway width were changed to create OVF and UVF conditions. Detailed comparisons of temperature and species concentrations between experimental and numerical data were presented in order to validate the predictive performance of FDS (Fire Dynamic Simulator). The OVF and UVF were explicitly characterized with distributions of temperature and product formation measured in the upper layer, as well as combustion efficiency and global equivalence ratio. It was shown that the numerical results provided a quantitatively realistic prediction of the experimental results observed in the OVF conditions. For the UVF, the numerically predicted temperature showed reasonable agreement with the measured temperature. The predicted steady-state volume fractions of $O_2$, $CO_2$, CO and THC also agreed quantitatively with the experimental data. Although there were some limitations to predict accurately the transient behavior in terms of CO production/consumption in the UVF condition, it was concluded that the current FDS was very useful tool to predict the fire characteristics inside the compartment for the OVF and UVF.