• Title/Summary/Keyword: Door Opening Force

Search Result 31, Processing Time 0.024 seconds

Shape Design of Hinge Stopper to Improve Refrigerator Door Opening Force (냉장고 도어 개방력 개선을 위한 힌지 스토퍼의 형상설계)

  • Seo, Ji-Hwan;Lee, Sanghoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.7
    • /
    • pp.66-71
    • /
    • 2021
  • In this study, the shape design optimization of a refrigerator door hinge stopper was performed to reduce the discrepancy in the opening forces of the left and right doors of a double-door refrigerator. A finite element model was constructed and analyzed by quasi-static analyses to evaluate the structural performance of the door hinge stopper. The reaction moment calculated at the hinge axis was used as a measure of the door opening and closing forces. The design objective is to increase the door opening force by 50% while maintaining the door closing force and the maximum stress calculated in the body of the hinge stopper at the current level. A new design concept with a contacting slot was proposed to decouple the door closing and opening forces. Shape optimization was performed to determine the dimensions of the new design of the hinge stopper, and the rib pattern was determined by topological optimization to further increase the door opening force. It was observed that the new design met all design requirements.

Analysis of Door Effort using 2D Model (2차원 모델을 이용한 도어 개폐력 해석)

  • 김창원;강성종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.131-137
    • /
    • 2003
  • Proper door effort, required force to open or close a vehicle door, is an essential door design factor for the safety of passengers and pedestrians. Section shape of the door checker arm is the most influential design parameter for achieving a door effort design target. In this research. an analysis procedure to predict door effort using a simplified plane strain finite element model wes investigated for two passenger cars, for which mechanism of checker systems were: different. The variation of checker arm force to be required during moving on arm in opening and closing direction was estimated through analysis, and the result was transformed to the door effort with respect to door opening angle by considering door characteristics. Also, the self·closing force due to door weight was theoretically calculated and added to the door effort from checker arm force. Finally the estimated results of door effort were compared with test results.

Reliability Analysis of Access Door Opening Force Measured with a Digital Force Gauge of a Pressurized Smoke Control Zone and Presentation of Optimum Conditions for the Opening Force (디지털 측정기로 측정된 급기가압 제연구역의 출입문 개방력에 대한 신뢰성 분석 및 최적 조건 제시)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.468-473
    • /
    • 2016
  • The aim of this study was to measure the opening force of an access door of a pressurized smoke control zone and verify the reliability of the opening force. For the access door opening force, the opening load of the access door was measured before and after pressurized air had entered the smoke control zone. The reliability of the measured values was verified using the Anderson Darling's statistical analysis method of the Minitab Program. Because the analyzed P values were greater than 0.05 except for some floors before and after the operation of the smoke control equipment, the opening force was found to have 95% reliability. The normal distribution of the measured values showed no relationship with the operation of the smoke control equipment and the precision of the force gauge was believed to be reliable. The major factors for the optimal design of the pressurized smoke control equipment include the precision and reliability of the force gauge, the correct posture of the measuring person, and the same conditions for access doors. Therefore, a digital force gauge is believed to be suitable for measuring the opening force of the access door of a pressurized smoke control zone. In addition, standardization of the posture of a measuring person, the setup of the initial opening force of an access door, etc., are major variables for effective measurements of the door opening force of an access door.

A Study on the Closing Force according to the Opening Angle of the Door in the Smoke Control System (제연구역 출입문 개방 각도에 따른 폐쇄력에 관한 연구)

  • Oh, Won-Sin;Joung, Suck-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.43-48
    • /
    • 2021
  • In this study, the experiment was conducted on a fire door(W × H = 0.98 m × 2.19 m) installed on the vestibule. The effective leakage area for each opening angles and closing forces derived from the impulse-momentum equation was compared and analyzed with the experimental results. As a result of the experiment, the major factors affecting the door closing forces were the pressure difference and the area of the door. The difference of door closing forces between measured and calculated values by the impulse-momentum equation showed a deviation of less than ±15% at the opening angles of 5°to 10°. At the door opening angle of 2.5°, the dynamic pressure was much higher than the measured static pressure, and this pressure difference is estimated to be air resistance acting to prevent the door from being completely closed.

Study on the Analysis of Differential Pressure of the Access Door for a Smoke Control Zone and the Effectiveness of the Measurement Criteria of its Opening Force (제연구역 출입문의 차압 및 개방력 측정기준의 실효성 분석에 관한 연구)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.26 no.4
    • /
    • pp.24-30
    • /
    • 2012
  • The purpose of this study is to analyze the problem in measuring the differential pressure between the fire area and the neighboring smoke control zone as well as the opening force of a fire door and to present the actual values measured by an objective method. NFSC 501A specifies that the force necessary to open an access door when operating a smoke control system shall be less than 110 N. When the smoke control system does not operate in the space where it is installed, the door opening force can be measured by the test method in KS F 2805. However, when the smoke control system operates, additional opening force is required to overcome the force generated by the differential pressure between the fire area and smoke control room. Therefore, it can be seen that the method proposed by the standard has insufficient reliability. The analog measuring device and digital measuring device showed that the opening forces, $F_a$ and $F_d$, of the fully closed door before the smoke control system were 27.8 N and 27.4 N, respectively. When the door remained open by $5^{\circ}$, the opening forces, $F_a$ and $F_d$, were 33 N and 33.6 N, respectively. When the smoke control system operated and the door was fully closed, the door opening forces, $F_a$ and $F_d$, were 77.6 N and 76.0 N, respectively. Therefore, since the door opening forces are different from the criteria presented by KS F 2805, it is required to review the criteria appropriately.

A Simple Control Method for Opening a Door with Mobile Manipulator

  • Kang, Ju-Hyun;Hwang, Chang-Soon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1593-1597
    • /
    • 2003
  • The home service robot supports human beings by performing various kinds of works at home. This paper presents a simple control method for opening a door from the viewpoint of the mobile manipulation. The simulation shows various results of path planning and motion planning for opening a door. The joint trajectories were generated by the simulation system. In general, a six-axis force/torque sensor at an end-effector is needed in order to maintain the static equilibrium of the manipulator. But we show another method. From three components of applied forces which was directly obtained by the three-axis force sensor and three components of applied forces which was indirectly estimated by the joint-torque sensors, all of joint torques that will exactly balance forces at the end-effector in the static situation can be found. It is more practical method than using a six-axis force sensor in a wrist. Experimental results have shown that the opening a door can be realized more effectively from the suggested control method of mobile manipulation.

  • PDF

Study on the Assessment of the Criteria on a Door Closer for the Optimum Design of the Access Door of a Smoke Control Zone (제연구역 출입문의 최적 설계를 위한 도어클로저의 기준 산정에 관한 연구)

  • Lee, Jae-Ou;Choi, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.27 no.3
    • /
    • pp.66-71
    • /
    • 2013
  • The purpose of this study is to assess the criteria on a floor hinge and door closer for the optimum design of the access door of a smoke control room. The door opening force due to differential pressure is 60.75 N, 40.5 N, 32.91 N and 12.66 N when the differential pressure is 60 Pa, 40 Pa, 32.5 Pa and 12.5 Pa, respectively. The door opening force of the floor hinge and door closer to which the criteria of KS F 2806 are applied is 27.5 N, 40 N, 75 N, 100 N and 125 N for the Nos. 1, 2, 3, 4 and 5 class floor hinges and door closers, respectively. This study compared the differential pressure and opening force limits of floor hinges and door closers with the values specified in NFSC 501A and found that they exceeded the criteria specified in NFSC 501A. Therefore, it is necessary to reflect the differential pressure and smoke control wind speeds as well as the opening forces specified in NFSC 501A on the design of floor hinges and door closers. The installation conditions of floor hinges and door closers of access doors differ depending on the type and name of a smoke control damper. This study found that Nos. 1, 2 and 3 floor hinges and door closers could be installed for access doors with low differential pressure and that Nos. 1 and 2 floor hinges and door closers could be installed for access doors with normal differential pressure.

Power-Assisted Door for a Passenger Vehicle (승용차의 개폐력 보조 문)

  • Lee, Byoung-Soo;Park, Min-Kyu;Sung, Kum-Gil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.532-538
    • /
    • 2010
  • SD (Smart Door) is a human friendly power-assisted door system initially targeted for passenger car doors. The Smart Door offers comfort and safety to passengers or/and drivers by supplying additional power. Amount of power supplied by the Smart Door system is depend on the environment where the automotive is situated. It realizes comfort, for example, when the force applied by the passenger to the door is expected to be abnormal, the SD system tries to compensate passenger's effort by supplying additional force. In this study, to enhance the ease of opening and closing the doors of the passenger vehicle, a Smart Door with a power assist mechanism consisting of a motor was developed and analysed. A power assist mechanism mounted within the vehicle's door is designed and modeled for simulation purpose. The required force necessary to control the designed mechanism during the vehicle's roll, pitch and the opening angle of the door has been considered. To this end, we propose a power-assisting control strategy called "gravity cancellation". The system is analysed by numerical simulation with the gravity cancellation control algorithm.

An Analysis of the Opening and Closing Condition with Various Fire Door Size in the Pressurized Room (부속실 출입문 크기 변화를 고려한 개방 및 폐쇄조건 분석)

  • You, Woo-Jun;Nam, Jun-Seok;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.132-137
    • /
    • 2011
  • A relationship between resisting moment and the structure of an automatic closure device is introduced for analyzing the effect of opening and closing condition on various fire door sizes in the pressurized room for smoke control system. The larger the size of fire door is, the more force is required for reaching to opening and closing conditions and there exists the design range of fire door in the pressurized room reflecting the closing time of fire door, rotative velocity, a relation between rotative angle and force and the efficiency of the automatic closure device.

Optimal Cam profile for Elevator Door opening mechanism (엘리베이터 문짝의 최적 운동 곡선)

  • Jun, Kyoung-Jin;Sohn, Jeong-Hyun;Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.454-458
    • /
    • 2001
  • In this paper, contact between the coupler-roller and guide in elevator door mechanism is modeled and analyzed with DADS 3D program. The contact force of coupler-roller is an important factor for impact and noise reduction when doors of elevator are opened or closed. To minimize the maximum contact force, an optimal cam profile for the door guide is suggested. To find an optimal shape of the guide, several types of motion curve are tested with DADS contact module.

  • PDF