• Title/Summary/Keyword: Dong Jin Lee

Search Result 12,312, Processing Time 0.042 seconds

Effect of Posture on the Distribution of Pulmonary Ventilation in Patients with Increased Closing volume (폐쇄용적(Closing Volume)이 증가된 만성 폐질환 환자에서 체위에 따른 폐환기량의 변화)

  • Kim, Young-Tae;Kim, Mee-Kyung;Lim, Chae-Man;Koh, Youn-Suck;Kim, Woo-Sung;Ryu, Jin-Sook;Lee, Myung-Hae;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.6
    • /
    • pp.631-637
    • /
    • 1993
  • Background: In normal adults, ventilation is uneven and greater in the base than the apex of the lung in tidal volume breathing. However infants have fragile chest wall and reduced elastic recoil, resulting in easy closure of peripheral airways especially in the dependent portion of the lung. So ventilation in infants is greater in the apex than the base of the lung. We assumed that in adults whose closing volume is increased, dependent portion could be easily collapsed during tidal breathing and ventilation could be greater in the uppear than than the lower portion of the lung. Methods: We measured spirometry and closing volume(CV) in normal controls and in patients with chronic lung disease. Also we measured fractional distribution of ventilation at supine, left lateral and right lateral decubitus with $^{133}Xe$ ventilation scan in normal controls, patients with normal closing volume and patients with increased closing volume. Results: The subjects consisted of 7 normal controls(mean $age{\pm}SD$, $62.9{\pm}6.1$ years). 6 patients with normal CV($62.8{\pm}8.2$ years) and 7 patients with increased CV($63.0{\pm}15.3$ years). 1) Normal controls have mean(${\pm}SD$) FVC $104{\pm}11%$ of predicted value, $FEV_1\;120{\pm}16%,\;FEV_1/FVC\;112{\pm}5%$ and CV $86.9{\pm}12.5%$. Patients with normal CV have FVC $62{\pm}11%,\;FEV_1\;54{\pm}17%,\;FEV_1/FVC\;84{\pm}23%$ and CV $92.6{\pm}15.5%$. Patients with increased CV, have FVC $53{\pm}9%,\;FEV_1\;38{\pm}13,\;FEV_1/FVC\;69{\pm}16%$ and CV $176.1{\pm}36.6%$, CV was significantly different between two patient groups(p<0.02) 2). In normal controls mean fractional ventilation to left lung was $48.1{\pm}5.3%$ at supine, $54.1{\pm}9.8%$ at dependent and $40.9{\pm}6.5%$ at left uppermost position. In patients with normal CV mean fractional ventilation to left lung was $44.6{\pm}2.1%$ at supine, $59.7{\pm}5.6%$ at left dependent and $31.7{\pm}8.3%$ at left uppermost position. In patients with increased CV mean fractional ventilation to left lung was $48.7{\pm}4.5%$ at supine, $41.7{\pm}6.6%$ at left dependent and $60.9{\pm}15.7%$ at left uppermost position. In normal controls and patients with normal CV, ventilation to left lung at left dependent position tends to be higher than that at supine position but without statisitical significance and it was significantly lower at left uppermost than at left lung dependent position. In patients with increased CV, ventilation to left at left dependent position tends to be higher than that at supine position but without significance and it was significantly higher at left uppermost than that at left dependent position. Conclusion: These data suggest that in patients with increased CV ventilation to one side of lung could be higher at uppermost than at dependent position on lateral decubitus during tidal breathing and this fact should be taken into account in positioning of patients with unilateral lung disease.

  • PDF

Phytoplankton Diversity and Community Structure Driven by the Dynamics of the Changjiang Diluted Water Plume Extension around the Ieodo Ocean Research Station in the Summer of 2020 (2020년 하계 장강 저염수가 이어도 해양과학기지 주변 해역의 식물플랑크톤 다양성 및 개체수 변화에 미치는 영향)

  • Kim, Jihoon;Choi, Dong Han;Lee, Ha Eun;Jeong, Jin-Yong;Jeong, Jongmin;Noh, Jae Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.924-942
    • /
    • 2021
  • The expansion of the Changjiang Diluted Water (CDW) plume during summer is known to be a major factor influencing phytoplankton diversity, community structure, and the regional marine environment of the northern East China Sea (ECS). The discharge of the CDW plume was very high in the summer of 2020, and cruise surveys and stationary monitoring were conducted to understand the dynamics of changes in environmental characteristics and the impact on phytoplankton diversity and community structure. A cruise survey was conducted from August 16 to 17, 2020, using R/V Eardo, and a stay survey at the Ieodo Ocean Research Station (IORS) from August 15 to 21, 2020, to analyze phytoplankton diversity and community structure. The southwestern part of the survey area exhibited low salinity and high chlorophyll a fluorescence under the influence of the CDW plume, whereas the southeastern part of the survey area presented high salinity and low chlorophyll a fluorescence under the influence of the Tsushima Warm Current (TWC). The total chlorophyll a concentrations of surface water samples from 12 sampling stations indicated that nano-phytoplankton (20-3 ㎛) and micro-phytoplankton (> 20 ㎛) were the dominant groups during the survey period. Only stations strongly influenced by the TWC presented approximately 50% of the biomass contributed by pico-phytoplankton (< 3 ㎛). The size distribution of phytoplankton in the surface water samples is related to nutrient supplies, and areas where high nutrient (nitrate) supplies were provided by the CDW plume displayed higher biomass contribution by micro-phytoplankton groups. A total of 45 genera of nano- and micro-phytoplankton groups were classified using morphological analysis. Among them, the dominant taxa were the diatoms Guinardia flaccida and Nitzschia spp. and the dinoflagellates Gonyaulax monacantha, Noctiluca scintillans, Gymnodinium spirale, Heterocapsa spp., Prorocentrum micans, and Tripos furca. The sampling stations affected by the TWC and low in nitrate concentrations presented high concentrations of photosynthetic pico-eukaryotes (PPE) and photosynthetic pico-prokaryotes (PPP). Most sampling stations had phosphate-limited conditions. Higher Synechococcus concentrations were enumerated for the sampling stations influenced by low-nutrient water of the TWC using flow cytometry. The NGS analysis revealed 29 clades of Synechococcus among PPP, and 11 clades displayed a dominance rate of 1% or more at least once in one sample. Clade II was the dominant group in the surface water, whereas various clades (Clades I, IV, etc.) were found to be the next dominant groups in the SCM layers. The Prochlorococcus group, belonging to the PPP, observed in the warm water region, presented a high-light-adapted ecotype and did not appear in the northern part of the survey region. PPE analysis resulted in 163 operational taxonomic units (OTUs), indicating very high diversity. Among them, 11 major taxa showed dominant OTUs with more than 5% in at least one sample, while Amphidinium testudo was the dominant taxon in the surface water in the low-salinity region affected by the CDW plume, and the chlorophyta was dominant in the SCM layer. In the warm water region affected by the TWC, various groups of haptophytes were dominant. Observations from the IORS also presented similar results to the cruise survey results for biomass, size distribution, and diversity of phytoplankton. The results revealed the various dynamic responses of phytoplankton influenced by the CDW plume. By comparing the results from the IORS and research cruise studies, the study confirmed that the IORS is an important observational station to monitor the dynamic impact of the CDW plume. In future research, it is necessary to establish an effective use of IORS in preparation for changes in the ECS summer environment and ecosystem due to climate change.