• Title/Summary/Keyword: Domestic Spent Fuel

Search Result 59, Processing Time 0.025 seconds

A Study on the Side Drop Impact of a Nuclear Spent Fuel Shipping Cask (사용후 핵연료 수송용기의 수평낙하충격에 관한 연구)

  • Chung, Sung-Hwan;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.457-469
    • /
    • 1997
  • A nuclear spent fuel shipping cask is required by IAEA and domestic regulations to withstand a 9m free drop condition. In this paper, the structural analysis under the 9m side drop condition was performed to understand the dynamic impact behavior and to evaluate the safety of the cask for 7 PWR nuclear spent fuel assemblies. The analysis result was compared with the measured value of the 9m side drop test for the 1/3 scaled-down model and the accuracy of the 3D analysis was confirmed. Analysis in accordance with the diameter of impact limiters for the proto-type cask were performed. Through the analysis, the impact behaviors due to the side drop and the effects dependent on the diameter of impact limiters were grasped. Maximum stress intensities on each part of the cask were respectively calculated by using the stress evaluation program and the structural safety of the cask was finally evaluated in accordance with the regulations.

Integrated risk assessment method for spent fuel road transportation accident under complex environment

  • Tao, Longlong;Chen, Liwei;Long, Pengcheng;Chen, Chunhua;Wang, Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.393-398
    • /
    • 2021
  • Current risk assessment of Spent Nuclear Fuel (SNF) transportation has the problem of the incomplete risk factors consideration and the general particle diffusion model utilization. In this paper, the accident frequency calculation and the detailed simulation of the accident consequences are coupled by the integrated risk assessment method. The "man-machine-environment" three-dimensional comprehensive risk indicator system is established and quantified to characterize the frequency of the transportation accidents. Consideration of vegetation, building and turbulence effect, the standard k-ε model is updated to simulate radioactive consequence of leakage accidents under complex terrain. The developed method is applied to assess the risk of the leakage accident in the scene of the typical domestic SNF Road Transportation (SNFRT). The critical risk factors and their impacts on the dispersion of the radionuclide are obtained.

Analyses on Thermal Stability and Structural Integrity of the Improved Disposal Systems for Spent Nuclear Fuels in Korea

  • Lee, Jongyoul;Kim, Hyeona;Kim, Inyoung;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.21-36
    • /
    • 2020
  • With respect to spent nuclear fuels, disposal containers and bentonite buffer blocks in deep geological disposal systems are the primary engineered barrier elements that are required to isolate radioactive toxicity for a long period of time and delay the leakage of radio nuclides such that they do not affect human and natural environments. Therefore, the thermal stability of the bentonite buffer and structural integrity of the disposal container are essential factors for maintaining the safety of a deep geological disposal system. The most important requirement in the design of such a system involves ensuring that the temperature of the buffer does not exceed 100℃ because of the decay heat emitted from high-level wastes loaded in the disposal container. In addition, the disposal containers should maintain structural integrity under loads, such as hydraulic pressure, at an underground depth of 500 m and swelling pressure of the bentonite buffer. In this study, we analyzed the thermal stability and structural integrity in a deep geological disposal environment of the improved deep geological disposal systems for domestic light-water and heavy-water reactor types of spent nuclear fuels, which were considered to be subject to direct disposal. The results of the thermal stability and structural integrity assessments indicated that the improved disposal systems for each type of spent nuclear fuel satisfied the temperature limit requirement (< 100℃) of the disposal system, and the disposal containers were observed to maintain their integrity with a safety ratio of 2.0 or higher in the environment of deep disposal.

Estimation of Decay Heat Generated from Long-Term Management of Spent Fuel (장기관리 핵연료로부터 방출되는 붕괴열량 추정)

  • Park, J.W.;J.H.Whang;Chun, K.S.;Park, H.S.
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.48-55
    • /
    • 1989
  • In this study, simple functional forms which could predict decay heat are referred to and modified in order to analyse more easily long-term behavior of decay heat generated from domestic PWR and CANDU spent fuel. To reduce the difference between the predicted data by functional forms and ORIGEN 2 results and to predict the decay heat under the important parameter(s), sensitivity analysis is performed. By introducing the identified hey parameter, turnup, into the functional forms, the decay heat of spent fuels within a limited rangs of cooling time(3~500 years) becomes predictable for various turnup rates. The predicted decay heat of spent fuels with representative turnup rates such as 33, 37 and 40 GWD/MTU by the functional forms is in so good agreement with ORIGEN 2 results within $\pm$10% difference over the cooling time from 1 to 10$^{5}$ years that the functional forms presented here may be used for engineering purposes such as the thermal design and assessment of the facilities associated with spent fuel management.

  • PDF

An Improved Concept of Deep Geological Disposal System Considering Arising Characteristics of Spent Fuels From Domestic Nuclear Power Plants (국내 원자력발전소에서의 사용후핵연료 발생 특성을 고려한 심층 처분시스템 개선)

  • Lee, Jongyoul;Kim, Inyoung;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.405-418
    • /
    • 2019
  • Based on spent fuels characteristics from domestic nuclear power plants and a disposal scenario from the current basic plan for high-level radioactive waste management, an improved disposal system has been proposed that enhances disposal efficiency and economic effectiveness compared to the existing disposal system. For this purpose, two disposal canisters concepts were derived from the length of the spent fuel generated from the nuclear power plants. In the disposal scenario, the acceptable amount of decay heat for each disposal container was determined, taking into account the discharge and disposal times of spent fuels in accordance with the current basic plan. Based on the determined decay heat of the two types of disposal canisters and the associated disposal system, thermal stability analyses were performed to confirm their suitability to the proposed disposal system design requirement and disposal efficiency assessment. The results of this study confirm 20% reduction in the disposal area and 20% increase in disposal density for the proposed disposal system compared to the existing system. These results can be used to establish a spent fuel management policy and to design a viable commercial disposal system.

Structural Analysis of Advanced Spent Fuel Conditioning Process Facility (차세대관리 종합공정 실증시설의 구조해석)

  • 구정회;정원명;조일제;국동학;유길성
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.411-420
    • /
    • 2003
  • An advanced spent fuel conditioning process (ACP) is developing for the safe and effective management of spent fuels which arising from the domestic nuclear power plants. And its demonstration facility is under design. This facility will be prepared by modifying IMEF's reserve hot cell facility which reserved for future usage by considering the characteristics of ACP. This study presents a basic structural architecture design and analysis results of ACP hot cell including modification of the IMEF. The results of this study will be used for the detail design of ACP demonstration facility, and utilized as basic data for the licensing of the ACP facility.

  • PDF

Projection and Burnup Trends of Spent Nuclear Fuel in Korea (국내 사용후핵연료 현황 분석)

  • 조동건;최종원;이희환
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.261-267
    • /
    • 2004
  • Inventories, projections, and characteristics of spent nuclear fuel(SNF) generated from domestic nuclear power plants were updated to support high-level waste disposal system design. The historical and projected inventory by the end 2055 is expected to be 20,500 and 14,800MTU for PWR and CANDU spent nuclear fuel, respectively The ratio of quantity for TEX>$17{\times}17$ SNF was shown to be 0.6 as of 2003. The amount of TEX>$17{\times}17$ SNF, however, will be less than that of TEX>$16{\times}16$ KSFA after 2012, while the quantity of TEX>$16{\times}16$ KSFA will reach to 70% of the total spent fuels in the 2055. Average turnup of SNF revealed ~36GWD/MTU and ~40GWD/MTU for the period of 1994-1999 and 2000-2003, respectively. It is expected that the average burnup of SNF will exceed 45GWD/MTU at the end of 2000's. Therefore, it seems reasonable to use the TEX>$17{\times}17$ 4.5w/o, 45GWD/MTU as the Reference SNF at present state. The TEX>$16{\times}16$ KSFA 4.5w/o, 55GWD/MTU, however, should be Reference SNF after ~2010.

  • PDF

Technology Assessment of the Repository Alternatives to Establish a Reference HLW Disposal Concept

  • Choi, Jong-Won;Choi, Young-Sung;Kwon, Sang-Ki;Kuh, Jung-Eui;Kang, Chul-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-100
    • /
    • 1999
  • As disposal packaging concepts of spent fuels generated from the domestic NPP, two types, one is to package PWR and CANDU spent fuels in different containers and the other is to package them together, were proposed. The configuration of the containers and the layout of underground repository, such as the container spacing and the deposition tunnel spacing, were developed. The layout of underground repository satisfies the thermal constraint of the bentonite buffer surrounding disposal container, which should be lower than $100^{\circ}C$ in order to keep the physical and chemical properties of bentonite From the spent fuel packaging concepts and container emplacement methods, seven options were developed. With a typical pair-wise comparison methods, AHP, the most promising disposal concept was selected based on the technology Point of view.

  • PDF

Data Analysis of International Joint Road and Sea Transportation Tests Under Normal Conditions of Transport (국제공동 육해상 정상운반시험의 데이터 분석)

  • Lim, JaeHoon;Cho, Sang Soon;Choi, Woo-seok
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2_spc
    • /
    • pp.275-289
    • /
    • 2020
  • In 2017, multimodal transportation tests for evaluating road, sea, and rail transport were performed by research institutes in the US, Spain, and the Republic of Korea. In this study, acceleration and strain data determined through road and sea tests were analyzed. It was investigated whether the load generated for each transport mode was amplified or attenuated according to the load transfer path. From the results, it was confirmed that the load transfer characteristics differed according to the transportation mode and loading path. The effects of strain determined through each test on the structural integrity of the spent nuclear fuel were also investigated. It was found that the magnitude of the measured strain had a negligible effect on the structural integrity of the spent nuclear fuel, considering its fatigue strength. The results for the acceleration and strain data analyses obtained in this study will be useful for scheduled domestic transportation tests under normal transport conditions.

The Development of U-recovery by Continuous Electrorefining (연속식 전해정련에 의한 우라늄 회수기술 개발)

  • Kim, Jeong-Guk;Park, Sung-Bin;Hwang, Sung-Chan;Kang, Young-Ho;Lee, Sung-Jai;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 2010
  • The electrorefining process, one of main processes which are composed of pyroprocess to recover the useful elements from spent fuel, and the domestic development of electrorefiner have been reviewed. The electrorefiner is composed of an anode basket containing reduced spent fuel such as uranium, transuranic and rare earth elements, and a solid cathode, which are in LiCl-KCl eutectic electrolyte. Oxidation (dissolution) reaction occurs on the anode and a pure uranium is electrochemically reduced (deposited) on the solid cathode. By application of graphite cathode, which has a self-scrapping characteristics for the uranium deposits, and a recovery of the fallen deposits by a screw conveyer, a high-throughput continuous electrorefiner with a capacity of 20 kgU/day has been developed.