• Title/Summary/Keyword: Dome height

Search Result 80, Processing Time 0.027 seconds

Free-vibration Analysis of Single-Layer Latticed Domes (단층래티스돔의 자유진동해석)

  • 박정우;정환목;권영환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.89-94
    • /
    • 1994
  • Latticed domes take form a curved surface by arranged members with certain patterns. For this reason, it is possible for the characteristics of vibration to complicate by change of various parameters of dome; grid-pattern, boundary condition and ratio of radius-height etc. Therefore, it is important to clarify the effect by these parameters before generalized dynamic response analysis. So this study deals with free vibration analysis of latticed domes and makes clear an effect of shape coefficient, that is, geometrical characteristics of latticed domes, on the vibration characteristics.

  • PDF

A Study on the Measurement of Surface-strain Using the Image Processing Technique(II) (화상처리법을 이용한 곡면변형률 측정에 관한 연구(II))

  • 한상준;김영수;김형종;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.142-146
    • /
    • 1997
  • An automated surface-strain measuring system is developed in the present study, which consists of the hardware to capture and to display digital images and the software to calculate the 3-D informations of grid points. The software is implemented using the image processing technique, and includes a program for the camera calibration and the post-processor to display the strain distribution. An LDH(limitting dome height) test specimen is measured its surface-strain as an application of the present system.

  • PDF

C7 Fracture as a Complication of C7 Dome-Like Laminectomy : Impact on Clinical and Radiological Outcomes and Evaluation of the Risk Factors

  • Yang, Seung Heon;Kim, Chi Heon;Lee, Chang Hyun;Ko, Young San;Won, Youngil;Chung, Chun Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.4
    • /
    • pp.575-584
    • /
    • 2021
  • Objective : Cervical expansive laminoplasty is an effective surgical method to address multilevel cervical spinal stenosis. During surgery, the spinous processes of C2 and C7 are usually preserved to keep the insertion points of the cervical musculature and nuchal ligament intact. In this regard, dome-like laminectomy (undercutting of C7 lamina) instead of laminoplasty is performed on C7 in selected cases. However, resection of the lamina can weaken the C7 lamina, and stress fractures may occur, but this complication has not been characterized in the literature. The objective of the present study was to investigate the incidence and risk factors for C7 laminar fracture after C7 dome-like laminectomy and its impact on clinical and radiological outcomes. Methods : Patients who underwent cervical open-door laminoplasty combined with C7 dome-like laminectomy (n=123) were classified according to the presence of C7 laminar fracture. Clinical parameters (neck/arm pain score and neck disability index) and radiologic parameters (C2-7 angle, C2-7 sagittal vertical axis, and C7-T1 angle) were compared between the groups preoperatively and at postoperatively at 3, 6, 12, and 24 months. Risk factors for complications were evaluated, and a formula estimating C7 fracture risk was suggested. Results : C7 lamina fracture occurred in 32/123 (26%) patients and occurred at the bilateral isthmus in 29 patients and at the spinolaminar junction in three patients. All fractures appeared on X-ray within 3 months postoperatively, but patients did not present any neurological deterioration. The fracture spontaneously healed in 27/32 (84%) patients at 1 year and in 29/32 (91%) at 2 years. During follow-up, clinical outcomes were not significantly different between the groups. However, patients with C7 fractures showed a more lordotic C2-7 angle and kyphotic C7-T1 angle than patients without C7 fractures. C7 fracture was significantly associated with the extent of bone removal. By incorporating significant factors, the probability of C7 laminar fracture could be assessed with the formula 'Risk score = 1.08 × depth (%) + 1.03 × length (%, of the posterior height of C7 vertebral body)', and a cut-off value of 167.9% demonstrated a sensitivity of 90.3% and a specificity of 65.1% (area under the curve, 0.81). Conclusion : C7 laminar fracture can occur after C7 dome-like laminectomy when a substantial amount of lamina is resected. Although C7 fractures may not cause deleterious clinical outcomes, they can lead to an unharmonized cervical curvature. The chance of C7 fracture should be discussed in the shared decision-making process.

Seismic Response Analysis According to the Height of Substructure of the Dome Structure Using Mid-Story Isolation System (중간층 면진을 적용한 돔 구조물의 하부 구조 높이에 따른 지진 응답 분석)

  • Choi, Na-Young;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.27-34
    • /
    • 2019
  • Spatial structure does not have columns and walls installed inside, so they have a large space. There are upper structure and substructure supporting them. The response of seismic loads to the upper structure may be increased or decreased due to the effects of the substructure. Therefore, in this study, the seismic response of the upper structure and the floor response spectrum of the substructure were compared and analyzed according to the height of the substructure in the spatial structure where the LRB was installed. As a result, the possibility of amplification of response was confirmed as seismic waves passed though the substructure, which is likely to increase the response of the upper structures.

Dynamic response of empty steel tanks with dome roof under vertical base motion

  • Virella, Juan C.;Godoy, Luis A.
    • Steel and Composite Structures
    • /
    • v.9 no.2
    • /
    • pp.119-130
    • /
    • 2009
  • This paper reports results of the structural response of empty steel tanks under vertical ground motions. The tanks are modeled using a finite element discretization using shell elements, and the vertical motion is applied and analyzed using nonlinear dynamics. Several excitation frequencies are considered, with emphasis on those that may lead to resonance of the roof. The computational results illustrate that as the base motion frequency is tuned with the frequency of the first roof-mode of the tank, the system displays large-amplitude displacements. For frequencies away from such mode, small amplitude displacements are obtained. The effect of the height of the cylinder on the dynamic response of the tank to vertical ground motion has also been investigated. The vertical acceleration of the ground motion that induces significant changes in the stiffness of the tank was found to be almost constant regardless of the height of the cylinder.

Size selectivity of the dome-shaped pot for whelk Buccinum opisthoplectum in the eastern coastal waters of Korea (반구형 통발에 대한 세고리물레고둥의 망목 선택성 연구)

  • Park, Chang-Doo;Bae, Jae-Hyun;Cho, Sam-Kwang;Cha, Bong-Jin;Kim, Hyun-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.4
    • /
    • pp.368-376
    • /
    • 2013
  • Fishing experiments were carried out in the adjacent sea of Yeongil Bay, the eastern cost of Korea from 2003 to 2004 using the dome-shaped pots with different five mesh sizes (17.1, 24.8, 35.3, 39.8, and 48.3mm) in order to determine the size selectivity of pots for the whelk, Buccinum opisthoplectum. The catch species were composed of Buccinum opisthoplectum (45.4%), Buccinum striatissimum (30.1%), Pandalopsis japonica (9.3%), Chionoecetes opilio (8.9%), and so on. The shell height (l) of Buccinum opisthoplectum caught in the experimental fishing pots was measured. The SELECT (Share Each Length's Catch Total) analysis method was applied with fishing data to obtain master selection curve. The model with the estimated split parameter was found to fit the catch data best. The master selection curve was estimated to be s (R)〓exp (7.833R-10.871)/[1 + exp (7.833R-10.871], where R is the ratio of shell height to mesh size. The relative shell length for 50% retention was 1.388, and the selection range was 0.281. It means that the pots of larger mesh size allow more whelks of small size to escape.

Formability of Aluminum 5182-Polypropylene Sandwich Panel for Automotive Application (자동차용 알루미늄 5185-폴리프로필렌 샌드위치 판재의 성형성)

  • Kim, Kee-Joo;Jeong, Hyo-Tae;Sohn, Il-Seon;Kim, Cheol-Woong;Kim, Joong-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 2007
  • The objective of this study was to develop formability evaluation techniques in order to apply aluminum sandwich panel for automotive body parts. For this purpose, newly adopting formability evaluation (using limit dome height and plane strain test) was carried out in order to secure the fundamental data for the measurement of sheet metal forming and the establishment of optimum forming conditions of the aluminum sandwich panel. The results showed that there were good agreements between the old formability evaluation method and the new method which was more simplified than that of old one. From the results of these formability evaluation, the formability of sandwich panel was higher than that of aluminum alloy sheet alone which was the skin component for the sandwich panel. Also, it was found that sandwich panel could reduce the weight and could have the same flexural rigidity simultaneously when it was compared to the automotive steel sheet.

Crash analysis of military aircraft on nuclear containment

  • Sadique, M.R.;Iqbal, M.A.;Bhargava, P.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.73-87
    • /
    • 2015
  • In case of aircraft impact on nuclear containment structures, the initial kinetic energy of the aircraft is transferred and absorbed by the outer containment, may causing either complete or partial failure of containment structure. In the present study safety analysis of BWR Mark III type containment has been performed. The total height of containment is 67 m. It has a circular wall with monolithic dome of 21m diameter. Crash analysis has been performed for fighter jet Phantom F4. A normal hit at the crown of containment dome has been considered. Numerical simulations have been carried out using finite element code ABAQUS/Explicit. Concrete Damage Plasticity model have been incorporated to simulate the behaviour of concrete at high strain rate, while Johnson-Cook elasto-visco model of ductile metals have been used for steel reinforcement. Maximum deformation in the containment building has reported as 33.35 mm against crash of Phantom F4. Deformations in concrete and reinforcements have been localised to the impact region. Moreover, no significant global damage has been observed in structure. It may be concluded from the present study that at higher velocity of aircraft perforation of the structure may happen.

A Study on the Behavior & Buckling Characteristics of Single-Layer Latticed Domes in the Erection Process (단층 래티스 돔의 Erection 중 거동 및 좌굴 특성)

  • Jung, Hwan-Mok;Kim, Cheol-Hwan;Hwang, Dong-Gyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.3
    • /
    • pp.45-51
    • /
    • 2008
  • A single layer-latticed dome is advantageous for large span structures because it is very stiff despite the light weight of the structure itself. However, this structure becomes easily unstable during erection due to its large size. The Block method is popular with the large span structures. A partial block of the dome is fabricated on the ground and lifted by crane to a designated location of structures. The lifting point selection is very important to create a stable erection and to avoid buckling of members during the erection. The purpose of this study is to analyze the structural behaviors and buckling characteristics according to the lifting point of single-layer latticed domes with triangle network in order to take materials about the safe and economic erection. The conclusions are obtained as follow. 1) The buckling strength of the block part varies with the location of lifting points when it is erected. In case, the height of the dome is lower, the effort of buckling strength of the structure is higher. 2) In buckling strength, the effect of the lifting rope length is smaller than it of the lifting points change.

  • PDF

FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES INDUCED BY OVERDENTURE WITH DIFFERENT DESIGNS OF ABUTMENT COPINGS (지대치 coping형태에 따른 overdenture하에서 하악 응력에 관한 유한요소법적 분석)

  • Park Hae-Kyoon;Chung Chae-Heon;Cho Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.141-170
    • /
    • 1991
  • This study was to analyze the displacement and the magnitude and mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment teeth and the mandibular supporting bone when various abutment designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. The models of overdenture and mandibe with the canine and the second premolar remaining, were fabricated. In the first design, a 1 mm space was prepared between the denture and the dome abutment with the height of 2 mm(OS). In the second design, a contact between the denture and the occlusal third of the dome abutment with the hight of 2 mm was prepared(OC). In the third design, a 0.5 mm space was prepared between the denture and 8 degree tapered cylindrical abutments with the height of 7 mm(TS). In the fourth design, a contact between the denture and the occlusal two thirds of the conical abutments with the height of 7 mm was prepared(TC). In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 Kgs on the first molar region (P1) and 7 Kgs on the central incisor region (P2) in a vertical direction. The force of 10 Kgs was then applied distributively from the first premolar to the second molar of each motel in a vertical direction (P3). The results were as follows: 1. The vertical load on the central incisor region(P2) produced the higher displacement and stress concentration than that on the posterior region(P1, P3). 2. The case of space between abutment and denture base produced higher displacement than that of contact, and the case of long abutment produced higher displacement than that of short abutment because of low rigidity of denture base. 3. The magnitude of the torque and vertical force to the abutment teeth and the stress distribution to the denture base was higher in the telescope coping than in the overdenture coping. 4. The vertical load on the central incisor region(P2) produced higher equivalent stress in the mandible than that on the posterior region(P1, P3). 5. The case of space between abutment and denture base produced better stress distribution to the farther abutment from the loading point than that of contact. 6. In case of sound abutment teeth, the type of telescope coping can be used, hilt in case of weak abutment, the type of overdenture coping is considered to be favorable generally.

  • PDF