• Title/Summary/Keyword: Domain engineering

Search Result 6,540, Processing Time 0.034 seconds

Inverse Compensation of Hysteresis in Ferromagnetic Materials (강자성체의 히스테리시스 역 보상 모델)

  • 박영우;한광섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1470-1474
    • /
    • 2004
  • This paper addresses the development of inverse compensation techniques for a class of ferromagnetic transducers including magnetostrictive actuators. In this work, hysteresis is modeled through the domain wall theory originally proposed by Jiles and Atherton[1]. This model is based on the quantification of the energy required to translate domain walls pinned at inclusions in the material with the magnetization at a given field level specified through the solution of an ordinary differential equation. A complementary differential equation is then employed to compute the inverse which can be used to compensate for hysteresis and nonlinear dynamics in control design.

  • PDF

Bezier Control Points for the Image of a Domain Curve on a Bezier Surface (베지어 곡면의 도메인 곡선의 이미지 곡선에 대한 베지어 조정점의 계산)

  • 신하용
    • Korean Journal of Computational Design and Engineering
    • /
    • v.1 no.2
    • /
    • pp.158-162
    • /
    • 1996
  • Algorithms to find the Bezier control points of the image of a Bezier domain curve on a Bezier surface are described. The diagonal image curve is analysed and the general linear case is transformed to the diagonal case. This proposed algorithm gives the closed form solution to find the control points of the image curve of a linear domain curve. If the domain curve is not linear, the image curve can be obtained by solving the system of linear equations.

  • PDF

Periodic domain formation in $>LiNbO_3$ single crystals during growth

  • Park, Jong-Koen
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.23-26
    • /
    • 1998
  • The domain formation phenomena of {{{{ { LiLbO}_{ 3} }}}} crystals was investigated and the method for the periodic domain formation in {{{{ { LiLbO}_{ 3} }}}} single crystals during growth was proposed in this study. The strees-induced domain formation mechanism was proposed and explained. The strong piezoelectric effect of{{{{ { LiLbO}_{ 3} }}}} at elevated temperature would be the direct driving force for the inversion of the tensile component of the internal stresses can inverse the original direction of the spontaneous polarization.

  • PDF

Development of Domain Model and Reuse Using Model Template (모델 템플리트를 이용한 도메인 모델 개발과 재사용)

  • 김지홍
    • Journal of Internet Computing and Services
    • /
    • v.3 no.3
    • /
    • pp.39-53
    • /
    • 2002
  • Since domain model affects largely on the development of object model and design decisions, this model is widely used in the object-oriented and component-based system development. Current $\infty$ methods and UML notation, however, do not support both engineering with reuse and engineering for reuse, This problem causes delay in project development time and inadequate domain model. The integration of extended UML notation and reuse process method can provide a solution to the reusability problem. In this paper, we designed UML based domain model template for the reuse of domain model and proposed domain model development method for the reuse of analysis information, In addition, it was possible to represent reusable domain model template in UML and to develope domain model in the internet sales domain.

  • PDF

A Three-Dimensional Locally One-Dimensional Multiresolution Time-Domain Method Using Daubechies Scaling Function

  • Ryu, Jae-Jong;Lee, Wu-Seong;Kim, Ha-Chul;Choi, Hyun-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.211-217
    • /
    • 2009
  • A three-dimensional locally one-dimensional multiresolution time-domain(LOD-MRTD) method is introduced and unconditional stability is proved analytically. The updating formulations have fewer terms on the right-hand side than those of an alternating direction implicit MRTD(ADI-MRTD). The validation of the method is presented using the resonance frequency problem of an empty cavity. The reduction of the numerical dispersion technique is also combined with the proposed method. The numerical examples show that the combined method can improve the accuracy significantly.

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.

High-transmittance Multi-domain Vertical Alignment Liquid Crystal Device with Protrusion Structure

  • Kim, Ki-Han;Jeon, Eun-Young;Park, Byung Wok;Choi, Sun-Wook;Song, Dong Han;Kim, Hoon;Shin, Ki-Chul;Kim, Hee Seop;Yoon, Tae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.166-169
    • /
    • 2012
  • We propose a high-transmittance multi-domain vertical alignment liquid crystal device with a protrusion structure. Disclination lines, which inevitably appear at the boundaries of domains in a multi-domain structure, can be reduced by adding a protrusion structure on the top substrate. The transmittance was improved by 11% using the proposed structure with no change of either the dark state or the operating voltage.

Control of the flexible system under irregular disturbance by using of 『random gain』

  • Cho, Yun-Hyun;Yang, Jae-Hyuk;Kim, Dae-Jung;Park, Sang-Tae;Chung, Jae-Wook;Hoon Heo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.435-439
    • /
    • 1998
  • A control strategy for flexible structure under irregular disturbance by using of$\boxDr$random gain$\boxUl$is developed and implemented. System equation is transformed to stochastic domain by F-P-K approach from physical domain. A controller is designed in the stochastic domain, accordingly system is controlled by$\boxDr$random gain$\boxUl$in time domain. In the paper, a new control technique is successfully employed for flexible system under white noise, and the result is verified by Monte-Carlo simulation and compared with the performance via LQR controller.

  • PDF

Direct forcing/fictitious domain-Level set method for two-phase flow-structure interaction (이상 유동에서의 유체-구조 연성해석을 위한 Direct Forcing/Ficititious Domain-Level Set Method)

  • Jeon, Chung-Ho;Yoon, Hyun-Sik;Jung, Jae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.36-41
    • /
    • 2011
  • In the present paper, a direct forcing/fictitious domain (DF/FD) level set method is proposed to simulate the FSI (fluid-solid interaction) in two-phase flow. The main idea is to combine the direct-forcing/fictitious domain (DF/FD) method with the level set method in the Cartesian coordinates. The DF/FD method is a non-Lagrange-multiplier version of a distributed Lagrange multiplier/fictitious domain (DLM/FD) method. This method does not sacrifice the accuracy and robustness by employing a discrete ${\delta}$ (Dirac delta) function to transfer quantities between the Eulerian nodes and Lagrangian points explicitly as the immersed boundary method. The advantages of this approach are the simple concept, easy implementation, and utilization of the original governing equation without modification. Simulations of various water-entry problems have been conducted to validate the capability and accuracy of the present method in solving the FSI in two-phase flow. Consequently, the present results are found to be in good agreement with those of previous studies.