• Title/Summary/Keyword: Dodecenoic acid

Search Result 5, Processing Time 0.018 seconds

Microbial Metabolism of trans-2-Dodecenal

  • Kim, Hyun-Jung;Park, Hae-Suk;Lee, Ik-Soo
    • Natural Product Sciences
    • /
    • v.17 no.1
    • /
    • pp.19-22
    • /
    • 2011
  • Microbial metabolism of trans-2-dodecenal (1) was studied. Screening studies have revealed a number of microorganisms that are capable of metabolizing trans-2-dodecenal (1). Scale-up fermentation with Penicillium chrysogenum resulted in the production of two microbial metabolites. These metabolites were identified using spectroscopic methods as trans-2-dodecenol (2) and trans-3-dodecenoic acid (3).

Studies on the Fatty acids in the White Poria cocos (백복령(白茯笭), White Poria cocos, 중(中)의 지방산(脂肪酸) 성분(成分)에 관한 연구(硏究))

  • Moon, Soon-Ku;Park, Sang-Shin;Min, Tae-Jin
    • The Korean Journal of Mycology
    • /
    • v.15 no.1
    • /
    • pp.9-13
    • /
    • 1987
  • The qualitative and quantitative analysis of fatty acids in the Korean White Poria cocos(Schw.) Wolf were performed. Dry powder of sample was extracted with chloroform-methanol(2 : 1, v/v) mixed solvent. The extract was saponified and methylated, and then analyzed by gas chromatography. Total 24 peaks were observed in the gas chromatogrom and 5 peaks i.e, $C_{8:0}\:;\:caprylic\:acid$, $C_{11:0}\:;\:undecanoic\:acid$, $C_{12:0}\:;\:lauric\:acid$. $C_{12:1}\:;\:dodecenoic\:acid$ and $C_{16:0}\:;\:palmitic\:acid$ were identified. Major components were $C_{8:0}\:and\:C_{12:1}$ were determined as $6.657\:{\mu}g/g\:and\:10.176{\mu}g/g$ respectively.

  • PDF

Two-Stage Microbial Biotransformation for the Production of 6-Dodecen-4-olide (Butter Lactone) from Plant Oils Containing Unsaturated Fatty Acids (불포화 지방산 함유 식물유를 이용한 천연 6-Dodecen-4-oilde (Butter Lactone) 생산을 위한 2-Stage Microbial Biotransformation)

  • Kwon, Soon-Hyang;Kim, Kyoung-Ju;Kim, Yang-Hwi Augustine
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.130-136
    • /
    • 2007
  • Natural 6-dodecen-4-olide (Butte lactone) was produced from plant oils containing high unsaturated fatty acids via two-stage microbial hiotransformation. After unsaturated fatty acids were liberated from plant oil by microbial lipase, these were converted to optically active hydroxyl fatty acid (HFA) by hydroxylation reaction of Pseudomonas sp. NRRLB-2994. When safflower oil containing >75% unsaturated fatty acid, linoleoic acid wasused, Pseudomonas sp. produced 8g/L of 10-hydroxy-12(z)-octadecanoicacid with average of 39.2% bioconversion efficiency during 48 hr biotransformation period. The recovered 10-hydroxy-12-octadecanoic acid was further bioconverted to 4-hydroxy-6-dodecenoic acid via partial ${\beta}-oxidation$ by Yarriowia lipolytica ATCC34088. 4-hydroxy-6-dodecenoic acid in culture was lactonized by lowering pH to 4.0 using $4N\;H_{2}SO_{4}$ and heating for 5 min to 6-dodecen-4-olide (Butter lactone). Natural 6-dodecen-4-olide had characteristic aroma properties when compared to 6-dodecan-4-oilde (dodecalactone) and 4-decen-4-olide (decalactone).

Occurrence of cis-4-Tetradecenoic Acid in the Oils of Kernels of Lindera erythrocarpa Seeds, as a Major Component

  • Kim, Seong-Jin;Joh, Yong-Goe
    • Food Science and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.107-111
    • /
    • 2006
  • Kernel oils of Lindera erythrocarpa seeds had high level of unusual fatty acid. Picolinyl ester of this unknown fatty acid showed molecular ion at m/z = 317 with other diagnostic ions such as m/z = 151, 191 (40 amu between two peaks), 204, and 218 on GC-MS. Characteristic peak at $720\;cm^{-1}$ appeared in IR spectrum. In $^1H-NMR$ spectrum both methylene protons at C-3 and C-6 resonated at ${\delta}2.309$ and ${\delta}2.012$, and methine protons of double bond resonated in lower magnetic field centered at ${\delta}5.296$ (C-4) and ${\delta}5.387$ (C-5) as multiplet (J = 9.7Hz). In $^{13}C-NMR$, signals at ${\delta}22.669$ and ${\delta}27.048$ were due to C-3 and C-6 of ${\delta}^4$-monoenoic acid. Results obtained from spectroscopic measurements confirmed unknown fatty acid as cis-4-tetradecenoic acid (cis-4-$C_{14:1}$). Main fatty acid components of oils were cis-4-$C_{14:1}$ (44.5-45.1%), oleic acid ($C_{18:1}$), 20.4-21.3%), and lauric acid ($C_{12:0}$, 11.6-12.4%), along with trace amounts of cis-4-$C_{12:1}$ and cis-4-$C_{16:1}$.

Growth Temperature-Dependent Conversion of De novo-Synthesized Unsaturated Fatty Acids into Polyhydroxyalkanoic Acid and Membrane Cyclopropane Fatty Acids in the Psychrotrophic Bacterium Pseudomonas fluorescens BM07

  • LEE , HO-JOO;RHO, JONG-KOOK;YOON, SUNG-CHUL
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1217-1226
    • /
    • 2004
  • A psychrotrophic bacterial strain, Pseudomonas fluorescens BM07, synthesized unsaturated fatty acids (UFA) from fructose in response to lowering of growth temperature, and incorporated them into both polyhydroxyalkanoic acid (PHA) and membrane lipid. The blocking of PHA synthesis by adding 5 mM 2-bromooctanoic acid to the growth medium, containing 70 mM fructose, was found to be a useful means to profile the composition of membrane lipid by gas chromatography. As the growth temperature changed from 35 to $50^{\circ}C$, the total content of two UFA, 3-hydroxy-cis-5­dodecenoic acid ($C_{12:1}$) and 3-hydroxy-cis-7-tetradecenoic acid ($C_{14:1}$), in PHA increased from 31 to 44 $mol\%$. The growth at lower temperatures also led to an increase in the level of two major UFA, palmitoleic acid (C16:1 cis9) and cis-vaccenic acid (C18:1 cis11), in membrane lipid. A fraction of these membrane-lipid UFA was converted to their corresponding cyclopropane fatty acids (CFA). The CFA conversion was a function of culture time, exhibiting biphasic increase before and after entering the stationary phase. However, pH changes in growth media had no effect on the CFA conversion, which is contrary to the case of E. coli reported. The cells grown at $30^{\circ}C$ responded to a cold shock (lowering the medium temperature down to $10^{\circ}C$) by increasing the level of C16:1 cis9 and C 18: I cis II up to that of $10^{\circ}C$-grown control cells and concomitantly decreasing the relative level of cis-9,10­methylenehexadecanoic acid (the CFA converted from C16:1 cis9) from 14 to 8 $mol\%$, whereas the 10-grown cells exhibited little change in the lipid composition when exposed to a warmer environment of $30^{\circ}C$ for 12 h. Based on this one- way response, we suggest that this psychrotrophic strain responds more efficiently and sensitively to a cold shock than to a hot shock. It is also suggested that BM07 strain is a good producer of two unsaturated 3-hydroxyacids, $C_{12:1}\;and\;C_{141:1}$.