• 제목/요약/키워드: Document-Summarization

검색결과 115건 처리시간 0.021초

신경망 또는 k-NN에 의한 신문 기사 분류와 그의 성능 비교 (The Comparison of Neural Network and k-NN Algorithm for News Article Classification)

  • 조태호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.363-365
    • /
    • 1998
  • 텍스트 마이닝(Text Mining)이란 텍스트형태의 문서들의 패턴 또는 관계를 추출하여 사용자가 원하는 새로운 정보를 가공하거나 기존의 정보를 변형하는 과정을 말한다. 텍스트 마이닝의 기능에는 문서 범주화(Document Categorization), 문서 군집화(Document Clustering), 그리고 문서 요약(Document Summarization)이 이에 해당된다. 문서 범주화란 문서에게 사전에 정의한 범주를 부여하는 과정을 말하고, 문서 군집화란 문서들을 계층적 구조로 형성하는 과정을 말하고, 문서 요약이란 문서의 전체 내용을 대표할 수 있는 내용의 일부만을 추출하는 과정을 말한다. 이 논문에서는 문서 범주화만을 다룰 것이며 그 대상으로는 신문기사로 설정하였다. 그의 범주는 4가지로 정치, 경제, 스포츠, 그리고 정보통신으로 설정하였다. 문서 범주화는 문서 분류(Document Classification)라고도 하며 문서에 범주를 자동으로 부여하여 기존에 인위적으로 부여함으로써 소요되는 시간과 비용을 절감하는 것이 목적이다. 문서 범주화에 대하여 k-NN(k-Nearest Neighbor)와 신경망을 이용하였으며, 신경망을 이용한 경우가 k-NN을 이용한 경우보다 성능이 우수하였다.

  • PDF

미등록 어휘에 대한 선택적 복사를 적용한 문서 자동요약 (Automatic Text Summarization based on Selective Copy mechanism against for Addressing OOV)

  • 이태석;선충녕;정영임;강승식
    • 스마트미디어저널
    • /
    • 제8권2호
    • /
    • pp.58-65
    • /
    • 2019
  • 문서 자동 요약은 주어진 문서로부터 주요 내용을 추출하거나 생성하는 방식으로 축약하는 작업을 말한다. 최근 연구에서는 대량의 문서를 딥러닝 기법을 적용하여 요약문 자체를 생성하는 방식으로 발전하고 있다. 생성 요약은 미리 생성된 위드 임베딩 정보를 사용하는데, 전문 용어와 같이 저빈도 핵심 어휘는 입베딩 된 사전에 없는 문제가 발생한다. 인코딩-디코딩 신경망 모델의 문서 자동 요약에서 미등록 어휘의 출현은 요약 성능 저하의 요인이다. 이를 해결하기 위해 본 논문에서는 요약 대상 문서에서 새로 출현한 단어를 복사하여 요약문을 생성하는 방법을 사용한다. 기존의 연구와는 달리 정확한 포인팅 정보와 선택적 복사 지시 정보를 명시적으로 제공하는 방법으로 제안하였다. 학습 데이터는 논문의 초록과 제목을 대상 문서와 정답 요약으로 사용하였다. 제안한 인코딩-디코딩 기반 모델을 통해서 자동 생성 요약을 수행한 결과 단어 제현 기반의 ROUGE-1이 47.01로 나타났으며, 또한 어순 기반의 ROUGE-L이 29.55로 향상되었다.

Copy Mechanism과 Input Feeding을 이용한 End-to-End 한국어 문서요약 (End-to-end Document Summarization using Copy Mechanism and Input Feeding)

  • 최경호;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.56-61
    • /
    • 2016
  • 본 논문에서는 Sequence-to-sequence 모델을 생성요약의 방법으로 한국어 문서요약에 적용하였으며, copy mechanism과 input feeding을 적용한 RNN search 모델을 사용하여 시스템의 성능을 높였다. 인터넷 신문기사를 수집하여 구축한 한국어 문서요약 데이터 셋(train set 30291 문서, development set 3786 문서, test set 3705문서)으로 실험한 결과, input feeding과 copy mechanism을 포함한 모델이 형태소 기준으로 ROUGE-1 35.92, ROUGE-2 15.37, ROUGE-L 29.45로 가장 높은 성능을 보였다.

  • PDF

Classifying Biomedical Literature Providing Protein Function Evidence

  • Lim, Joon-Ho;Lee, Kyu-Chul
    • ETRI Journal
    • /
    • 제37권4호
    • /
    • pp.813-823
    • /
    • 2015
  • Because protein is a primary element responsible for biological or biochemical roles in living bodies, protein function is the core and basis information for biomedical studies. However, recent advances in bio technologies have created an explosive increase in the amount of published literature; therefore, biomedical researchers have a hard time finding needed protein function information. In this paper, a classification system for biomedical literature providing protein function evidence is proposed. Note that, despite our best efforts, we have been unable to find previous studies on the proposed issue. To classify papers based on protein function evidence, we should consider whether the main claim of a paper is to assert a protein function. We, therefore, propose two novel features - protein and assertion. Our experimental results show a classification performance with 71.89% precision, 90.0% recall, and a 79.94% F-measure. In addition, to verify the usefulness of the proposed classification system, two case study applications are investigated - information retrieval for protein function and automatic summarization for protein function text. It is shown that the proposed classification system can be successfully applied to these applications.

Effectiveness of Fuzzy Graph Based Document Model

  • Aswathy M R;P.C. Reghu Raj;Ajeesh Ramanujan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권8호
    • /
    • pp.2178-2198
    • /
    • 2024
  • Graph-based document models have good capabilities to reveal inter-dependencies among unstructured text data. Natural language processing (NLP) systems that use such models as an intermediate representation have shown good performance. This paper proposes a novel fuzzy graph-based document model and to demonstrate its effectiveness by applying fuzzy logic tools for text summarization. The proposed system accepts a text document as input and identifies some of its sentence level features, namely sentence position, sentence length, numerical data, thematic word, proper noun, title feature, upper case feature, and sentence similarity. The fuzzy membership value of each feature is computed from the sentences. We also propose a novel algorithm to construct the fuzzy graph as an intermediate representation of the input document. The Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metric is used to evaluate the model. The evaluation based on different quality metrics was also performed to verify the effectiveness of the model. The ANOVA test confirms the hypothesis that the proposed model improves the summarizer performance by 10% when compared with the state-of-the-art summarizers employing alternate intermediate representations for the input text.

주제 균형 지능형 텍스트 요약 기법 (Subject-Balanced Intelligent Text Summarization Scheme)

  • 윤여일;고은정;김남규
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.141-166
    • /
    • 2019
  • 최근 다양한 매체를 통해 생성되는 방대한 양의 텍스트 데이터를 효율적으로 관리 및 활용하기 위한 방안으로써 문서 요약에 대한 연구가 활발히 진행되고 있다. 특히 최근에는 기계 학습 및 인공 지능을 활용하여 객관적이고 효율적으로 요약문을 도출하기 위한 다양한 자동 요약 기법이(Automatic Summarization) 고안되고 있다. 하지만 현재까지 제안된 대부분의 텍스트 자동 요약 기법들은 원문에서 나타난 내용의 분포에 따라 요약문의 내용이 구성되는 방식을 따르며, 이와 같은 방식은 비중이 낮은 주제(Subject), 즉 원문 내에서 언급 빈도가 낮은 주제에 대한 내용이 요약문에 포함되기 어렵다는 한계를 갖고 있다. 본 논문에서는 이러한 한계를 극복하기 위해 저빈도 주제의 누락을 최소화하는 문서 자동 요약 기법을 제안한다. 구체적으로 본 연구에서는 (i) 원문에 포함된 다양한 주제를 식별하고 주제별 대표 용어를 선정한 뒤 워드 임베딩을 통해 주제별 용어 사전을 생성하고, (ii) 원문의 각 문장이 다양한 주제에 대응되는 정도를 파악하고, (iii) 문장을 주제별로 분할한 후 각 주제에 해당하는 문장들의 유사도를 계산한 뒤, (iv) 요약문 내 내용의 중복을 최소화하면서도 원문의 다양한 내용을 최대한 포함할 수 있는 자동적인 문서 요약 기법을 제시한다. 제안 방법론의 평가를 위해 TripAdvisor의 리뷰 50,000건으로부터 용어 사전을 구축하고, 리뷰 23,087건에 대한 요약 실험을 수행한 뒤 기존의 단순 빈도 기반의 요약문과 주제별 분포의 비교를 진행하였다. 실험 결과 제안 방법론에 따른 문서 자동 요약을 통해 원문 내각 주제의 균형을 유지하는 요약문을 도출할 수 있음을 확인하였다.

복수의 신문기사 자동요약에 관한 실험적 연구 (An Experimental Study on Automatic Summarization of Multiple News Articles)

  • 김용광;정영미
    • 정보관리학회지
    • /
    • 제23권1호
    • /
    • pp.83-98
    • /
    • 2006
  • 이 연구에서는 복수의 신문기사를 자동으로 요약하기 위해 문장의 의미범주를 활용한 템플리트 기반 요약 기법을 제시하였다. 먼저 학습과정에서 사건/사고 관련 신문기사의 요약문에 포함할 핵심 정보의 의미범주를 식별한 다음 템플리트를 구성하는 각 슬롯의 단서어를 선정한다. 자동요약 과정에서는 입력되는 복수의 뉴스기사들을 사건/사고 별로 범주화한 후 각 기사로부터 주요 문장을 추출하여 템플리트의 각 슬롯을 채운다. 마지막으로 문장을 단문으로 분리하여 템플리트의 내용을 수정한 후 이로부터 요약문을 작성한다. 자동 생성된 요약문을 평가한 결과 요약 정확률과 요약 재현율은 각각 0.541과 0.581로 나타났고, 요약문장 중복률은 0.116으로 나타났다.

흐름이 있는 문서에 적합한 비지도학습 추상 요약 방법 (Unsupervised Abstractive Summarization Method that Suitable for Documents with Flows)

  • 이훈석;안순홍;김승훈
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.501-512
    • /
    • 2021
  • 최근 Encoder-Decoder를 기반한 요약은 거의 인간 수준에 도달하였다. 하지만 이는 영어, 중국어 등 수백만 건의 데이터세트가 잘 갖추어진 주류 언어권에서만 활용 가능하며 데이터세트가 구축되지 않은 비주류 언어권에서는 활용하지 못하는 한계가 있다. 또한, 문서의 일부 영역에 초점 하여 요약하는 편향의 문제를 갖고 있어 동화나 소설과 같이 흐름이 있는 문서에는 적합하지 않다. 본 논문에서는 두 개의 Discriminator가 있는 GAN을 통해 비지도 학습 기반의 추상 요약을 하며, 가이드 토큰의 추출과 주입을 통해 편향 문제를 개선하는 추출 요약과 추상 요약을 혼합한 하이브리드 요약 방법을 제안한다. CNN/Daily Mail 데이터세트를 통해 모델을 평가하여 객관적인 타당성을 검증하고 비주류 언어 중 하나인 한국어에서도 유효한 성능을 보인다는 것을 입증한다.

퍼지이론을 이용한 자동문서 요약 기술 (Automatic Document Summary Technique Using Fuzzy Theory)

  • 이상훈;문승진
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권12호
    • /
    • pp.531-536
    • /
    • 2014
  • 인터넷에서 사용 가능한 수많은 정보로 인해서 대용량의 문서를 다루는 기술은 점차 그 필요성이 증가되어 왔지만, 효과적으로 문서 내 정보를 처리하기 위한 기술의 문제는 여전히 풀어야 할 과제로 남아 있다. 자동문서 요약 기술은 문서 내 중요한 부분을 유지하고, 중복된 내용을 제거함으로써 이러한 대용량의 문서를 처리하는 데 중요한 방법으로 인식되어 왔다. 본 논문에서는 이러한 요약문을 만들 때 중요도를 결정하는 문제를 해결하기 위해서 퍼지 이론을 이용한 문서 요약 기술을 제안한다. 제안된 요약 기술은 중요도를 결정하는 여러 특징들의 애매모호한 문제를 해결하고, 그 실험결과는 기존의 다른 방법과 비교해서 전반적으로 높은 결과를 보인다.

단일문서와 복수문서 자동요약의 특성에 따른 기능 분석 (Analysis on Automatic Summarization Functions of the Single Document and the Multi Documents)

  • 최상희
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2003년도 제10회 학술대회 논문집
    • /
    • pp.303-312
    • /
    • 2003
  • 요약은 원문의 주제를 파악하여 원문의 축약판을 만들어 이용자에게 제공하는 중요한 정보 생산 과정이다. 최근 이용자에게 제공되는 정보량이 급증하면서 자동 요약에 대한 필요성이 더욱 증가하고 있으며 단일문서의 내용을 파악하는 도구로써 활용되던 요약이 문서집합의 내용을 파악하는 도구 및 새로운 정보생성 수단으로 그 기능을 넓혀가고 있다. 본 논고에서는 자동요약의 기본 개념과 요약대상의 문서 수에 따른 요약 특성 및 기능을 고찰하였다.

  • PDF