• Title/Summary/Keyword: Document Indexing

Search Result 105, Processing Time 0.019 seconds

An Approach to Detect Spam E-mail with Abnormal Character Composition (비정상 문자 조합으로 구성된 스팸 메일의 탐지 방법)

  • Lee, Ho-Sub;Cho, Jae-Ik;Jung, Man-Hyun;Moon, Jong-Sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.6A
    • /
    • pp.129-137
    • /
    • 2008
  • As the use of the internet increases, the distribution of spam mail has also vastly increased. The email's main use was for the exchange of information, however, currently it is being more frequently used for advertisement and malware distribution. This is a serious problem because it consumes a large amount of the limited internet resources. Furthermore, an extensive amount of computer, network and human resources are consumed to prevent it. As a result much research is being done to prevent and filter spam. Currently, research is being done on readable sentences which do not use proper grammar. This type of spam can not be classified by previous vocabulary analysis or document classification methods. This paper proposes a method to filter spam by using the subject of the mail and N-GRAM for indexing and Bayesian, SVM algorithms for classification.

Partitioning and Merging an Index for Efficient XML Keyword Search (효율적 XML키워드 검색을 인덱스 분할 및 합병)

  • Kim, Sung-Jin;Lee, Hyung-Dong;Kim, Hyoung-Joo
    • Journal of KIISE:Databases
    • /
    • v.33 no.7
    • /
    • pp.754-765
    • /
    • 2006
  • In XML keyword search, a search result is defined as a set of the smallest elements (i.e., least common ancestors) containing all query keywords and a granularity of indexing is an XML element instead of a document. Under the conventional index structure, all least common ancestors produced by the combination of the elements, each of which contains a query keyword, are considered as a search result. In this paper, to avoid unnecessary operations of producing the least common ancestors and reduce query process time, we describe a way to construct a partitioned index composed of several partitions and produce a search result by merging those partitions if necessary. When a search result is restricted to be composed of the least common ancestors whose depths are higher than a given minimum depth, under the proposed partitioned index structure, search systems can reduce the query process time by considering only combinations of the elements belonging to the same partition. Even though the minimum depth is not given or unknown, search systems can obtain a search result with the partitioned index, which requires the same query process time to obtain the search result with non-partitioned index. Our experiment was conducted with the XML documents provided by the DBLP site and INEX2003, and the partitioned index could reduce a substantial amount of query processing time when the minimum depth is given.

WordNet-Based Category Utility Approach for Author Name Disambiguation (저자명 모호성 해결을 위한 개념망 기반 카테고리 유틸리티)

  • Kim, Je-Min;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.225-232
    • /
    • 2009
  • Author name disambiguation is essential for improving performance of document indexing, retrieval, and web search. Author name disambiguation resolves the conflict when multiple authors share the same name label. This paper introduces a novel approach which exploits ontologies and WordNet-based category utility for author name disambiguation. Our method utilizes author knowledge in the form of populated ontology that uses various types of properties: titles, abstracts and co-authors of papers and authors' affiliation. Author ontology has been constructed in the artificial intelligence and semantic web areas semi-automatically using OWL API and heuristics. Author name disambiguation determines the correct author from various candidate authors in the populated author ontology. Candidate authors are evaluated using proposed WordNet-based category utility to resolve disambiguation. Category utility is a tradeoff between intra-class similarity and inter-class dissimilarity of author instances, where author instances are described in terms of attribute-value pairs. WordNet-based category utility has been proposed to exploit concept information in WordNet for semantic analysis for disambiguation. Experiments using the WordNet-based category utility increase the number of disambiguation by about 10% compared with that of category utility, and increase the overall amount of accuracy by around 98%.

A Study on the Integration of Information Extraction Technology for Detecting Scientific Core Entities based on Large Resources (대용량 자원 기반 과학기술 핵심개체 탐지를 위한 정보추출기술 통합에 관한 연구)

  • Choi, Yun-Soo;Cheong, Chang-Hoo;Choi, Sung-Pil;You, Beom-Jong;Kim, Jae-Hoon
    • Journal of Information Management
    • /
    • v.40 no.4
    • /
    • pp.1-22
    • /
    • 2009
  • Large-scaled information extraction plays an important role in advanced information retrieval as well as question answering and summarization. Information extraction can be defined as a process of converting unstructured documents into formalized, tabular information, which consists of named-entity recognition, terminology extraction, coreference resolution and relation extraction. Since all the elementary technologies have been studied independently so far, it is not trivial to integrate all the necessary processes of information extraction due to the diversity of their input/output formation approaches and operating environments. As a result, it is difficult to handle scientific documents to extract both named-entities and technical terms at once. In this study, we define scientific as a set of 10 types of named entities and technical terminologies in a biomedical domain. in order to automatically extract these entities from scientific documents at once, we develop a framework for scientific core entity extraction which embraces all the pivotal language processors, named-entity recognizer, co-reference resolver and terminology extractor. Each module of the integrated system has been evaluated with various corpus as well as KEEC 2009. The system will be utilized for various information service areas such as information retrieval, question-answering(Q&A), document indexing, dictionary construction, and so on.

Odysseus/Parallel-OOSQL: A Parallel Search Engine using the Odysseus DBMS Tightly-Coupled with IR Capability (오디세우스/Parallel-OOSQL: 오디세우스 정보검색용 밀결합 DBMS를 사용한 병렬 정보 검색 엔진)

  • Ryu, Jae-Joon;Whang, Kyu-Young;Lee, Jae-Gil;Kwon, Hyuk-Yoon;Kim, Yi-Reun;Heo, Jun-Suk;Lee, Ki-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.4
    • /
    • pp.412-429
    • /
    • 2008
  • As the amount of electronic documents increases rapidly with the growth of the Internet, a parallel search engine capable of handling a large number of documents are becoming ever important. To implement a parallel search engine, we need to partition the inverted index and search through the partitioned index in parallel. There are two methods of partitioning the inverted index: 1) document-identifier based partitioning and 2) keyword-identifier based partitioning. However, each method alone has the following drawbacks. The former is convenient in inserting documents and has high throughput, but has poor performance for top h query processing. The latter has good performance for top-k query processing, but is inconvenient in inserting documents and has low throughput. In this paper, we propose a hybrid partitioning method to compensate for the drawback of each method. We design and implement a parallel search engine that supports the hybrid partitioning method using the Odysseus DBMS tightly coupled with information retrieval capability. We first introduce the architecture of the parallel search engine-Odysseus/parallel-OOSQL. We then show the effectiveness of the proposed system through systematic experiments. The experimental results show that the query processing time of the document-identifier based partitioning method is approximately inversely proportional to the number of blocks in the partition of the inverted index. The results also show that the keyword-identifier based partitioning method has good performance in top-k query processing. The proposed parallel search engine can be optimized for performance by customizing the methods of partitioning the inverted index according to the application environment. The Odysseus/parallel OOSQL parallel search engine is capable of indexing, storing, and querying 100 million web documents per node or tens of billions of web documents for the entire system.