Many works have been done in the field of retrieving audio segments that contain human speeches without captions. To retrieve newly coined words and proper nouns, subwords were commonly used as indexing units in conjunction with query or document expansion. Among them, document expansion with subwords has serious drawback of large computation overhead. Therefore, in this paper, we propose Expected Matching Score based document expansion that effectively reduces computational overhead without much loss in retrieval precisions. Experiments have shown 13.9 times of speed up at the loss of 0.2% in the retrieval precision.
인터넷을 비롯한 대다수의 정보검색에서 사용자가 느끼는 공통된 어려움중의 하나는 검색결과가 너무 많다는 것이다. 본 연구는 검색결과를 줄이는 방법의 하나로써 검색 문헌에 대한 정제 방법에 대하여 논의한 것이다. 궁극적으로 종전의 검색시스템에서 제대로 고려하지 않은 개념망을 통한 질의어 확장과 확장 질의어와 전처리된 문서와의 유사도 측정을 통한 문서의 선택, 백과사전 정보에 의한 의미 확장과 클러스터링, 필터링 기법 등이 정보검색의 효율을 향상시키는데 효과적인 방안임을 제안한다.
표제어 검색시스템은 뜻풀이를 질의로 간주하는 정보검색 시스템이다. 이러한 시스템을 구축하기 위한 가장 간단한 방법으로 사전의 표제어 뜻풀이(사전 뜻풀이)를 문서로 간주하는 정보검색 시스템을 구축하는 것이다. 이 문서의 길이가 너무 짧아 사용자 질의(사용자 뜻풀이)에 대한 적절한 표제어를 검색하기 어렵다. 이 문제를 완화하기 위해서 본 논문에서는 정보검색에서 사용되는 질의 확장 개념을 문서 확장에 적용한다. 본 논문에서는 문서 확장 방법으로는 뜻풀이 확장과 유의어 확장을 사용한다. 뜻풀이 확장은 주어진 단어의 사전 뜻풀이에 속하는 단어의 뜻풀이를 문서에 포함시키는 방법이고, 유의어 확장은 무자질 군집화 알고리즘을 통해서 유의어를 찾고, 찾아진 유의어를 문서에 포함시키는 방법이다. 제안된 표제어 검색시스템은 사전 뜻풀이 그 자체를 입력으로 할 때, 16-포함률이 거의 100%에 달하였다. 또한 사용자 뜻풀이를 입력으로 할 때, 20-포함률이 66.9%였다. 사용자 뜻풀이가 단어의 의미를 충분히 전달할 수 없는 것으로 관찰되었으며 앞으로 정확하고 객관적인 평가를 위해서 평가 집합에 대한 연구가 추가적으로 필요한 실정이다.
트위터, 페이스북, 온라인 고객 리뷰 등은 신문기사처럼 정제된 글이 아닌 자유롭게 기술되는 비격식(informal) 텍스트 문서에 속한다. 이러한 비격식 문서에서 일관된 규칙이나 패턴을 찾는 일은 격식(formal) 문서 경우에 비해 용이하지 않기 때문에, 비격식 문서 분석을 위해서는 성능 개선을 위한 추가적인 접근 방법 필요다고 판단된다. 본 연구에서는 대표적 비격식 문서인 트위터 데이터를 열 가지 카테고리로 분류함에 있어 LDA(Latent Dirichlet allocation) 단어 분포를 사용하여 자질(feature)을 교정하고 확장한다. 토픽별로 상위에 랭크된 단어 자질들을 기반으로 다른 단어 자질들을 분해 및 병합하는 방식으로 유용한 자질 집합을 반복적으로 확장시킨다. 이렇게 생성된 자질로 문서 분류를 수행한 결과 자질 확장 이전에 비해 마이크로 평균 F1-score 7.11%p의 성능 개선 효과를 확인할 수 있었다.
기존의 XML 질의 방법은 단순 키워드 정합이나 단순 구조적 확장 등에 국한되므로 문서에 내재된 정보를 검색하기에 불충분할 뿐만 아니라,모든 문서에 질의를 인가함으로써 정보검객의 효율을 저하시킨다. 본 연구는 온톨로지로부터 생성한 포괄적 BTD에 의해 검객대상 문서를 사전에 미리 선별하는 문서여과 방법과 온톨로지의 개념구조와 개념 간 연관관계를 추론하여 질의를 확장하는 방법을 제안함으로써 XML정보검색의 효과를 증대 하고자 한다. 제안한 문서여과 및 질의확장 방법은 다양한 XML 문서를 대상으로 검색 효과를 실험하였다.
Yasir Hadi Farhan;Mohanaad Shakir;Mustafa Abd Tareq;Boumedyen Shannaq
Journal of Information Science Theory and Practice
/
제12권3호
/
pp.36-48
/
2024
The information retrieval (IR) process often encounters a challenge known as query-document vocabulary mismatch, where user queries do not align with document content, impacting search effectiveness. Automatic query expansion (AQE) techniques aim to mitigate this issue by augmenting user queries with related terms or synonyms. Word embedding, particularly Word2Vec, has gained prominence for AQE due to its ability to represent words as real-number vectors. However, AQE methods typically expand individual query terms, potentially leading to query drift if not carefully selected. To address this, researchers propose utilizing median vectors derived from deep median networks to capture query similarity comprehensively. Integrating median vectors into candidate term generation and combining them with the BM25 probabilistic model and two IR strategies (EQE1 and V2Q) yields promising results, outperforming baseline methods in experimental settings.
Journal of Information Science Theory and Practice
/
제9권2호
/
pp.1-17
/
2021
Pseudo relevance feedback (PRF) is a powerful query expansion (QE) technique that prepares queries using the top k pseudorelevant documents and choosing expansion elements. Traditional PRF frameworks have robustly handled vocabulary mismatch corresponding to user queries and pertinent documents; nevertheless, expansion elements are chosen, disregarding similarity to the original query's elements. Word embedding (WE) schemes comprise techniques of significant interest concerning QE, that falls within the information retrieval domain. Deep averaging networks (DANs) defines a framework relying on average word presence passed through multiple linear layers. The complete query is understandably represented using the average vector comprising the query terms. The vector may be employed for determining expansion elements pertinent to the entire query. In this study, we suggest a DANs-based technique that augments PRF frameworks by integrating WE similarities to facilitate Arabic information retrieval. The technique is based on the fundamental that the top pseudo-relevant document set is assessed to determine candidate element distribution and select expansion terms appropriately, considering their similarity to the average vector representing the initial query elements. The Word2Vec model is selected for executing the experiments on a standard Arabic TREC 2001/2002 set. The majority of the evaluations indicate that the PRF implementation in the present study offers a significant performance improvement compared to that of the baseline PRF frameworks.
This paper aims to offer a solution based on semantic document classification to improve e-Government utilization and efficiency for people using their own information retrieval system and linguistic expression Generally, semantic document classification method is an approach that classifies documents based on the diverse relationships between keywords in a document without fully describing hierarchial concepts between keywords. Our approach considers the deep meanings within the context of the document and radically enhances the information retrieval performance. Concept Weight Document Classification(CoWDC) method, which goes beyond using exist ing keyword and simple thesaurus/ontology methods by fully considering the concept hierarchy of various concepts is proposed, experimented, and evaluated. With the recognition that in order to verify the superiority of the semantic retrieval technology through test results of the CoWDC and efficiently integrate it into the e-Government, creation of a thesaurus, management of the operating system, expansion of the knowledge base and improvements in search service and accuracy at the national level were needed.
본 논문에서는 퍼지 논리 기반의 유전자 알고리즘(GA)과 의미 벡터 확장 기술을 이용한 문서 클러스터링 시스템을 제안한다. GA에 관련된 여러 논문에서 이미 알려졌듯이 GA알고리즘의 성공 여부는 군체의 다양성과 수렴하는 능력에 따라 결정된다. 이러한 두 인자 사이의 영향력을 조절하기 위하여 우리는 퍼지 논리 기반의 연산자를 사용한다. 전통적인 문서 클러스터링 알고리즘에서 문서를 나타내기 위한 가장 일반적이고 직선적인 방법은 벡터 공간 모델이다. 그러나 이 방법은 다차원 특징 공간의 원인이 될 뿐만 아니라, 클러스터링의 정확성에 영향을 미칠 수 있는, 단어 간의 의미상 관계성을 무시한다. 본 논문에서는 LSA를 사용하여 문서를 관련되는 의미상의 벡터 개념으로 확장시킨다. 또한 이것은 벡터의 크기를 크게 줄일 수 있다. 본 논문에서 제안한 클러스터링 알고리즘을 테스트하기 위하여 20개의 뉴스 그룹과 로이터 데이터를 사용했다. 제안된 방법은 문서를 표현하는 다양한 환경에서 일반적인 GA보다 더 나은 결과를 보여준다.
본 논문에서는 문서 필터링을 위한 질의어 확장과 가중치 부여 기법을 제안한다. 문서 필터링은 웹 검색 엔진들에 대한 검색 결과의 정확률 향상을 목적으로 한다. 문서 필터링을 위한 질의어 확장은 개념망, 백과사전, 유사도 상위 10% 문서를 이용하며, 각각의 확장 질의어에 가중치를 부쳐하여 질의어와 문서들간의 유사도를 계산한다. 첫 번째 단계에서 개념망과 백과사전을 이용하여 초기 질의어에 대한 1차 확장 질의어를 생성하고, 1차 확장 질의엉 가중치를 부여하여 질의어와 문서들간의 유사도를 계산한다. 다음 단계에서는 높은 유사도를 갖는 상위 10% 문서들을 이용하여 2타 확장 질의어를 생성하고, 2차 확장 질의어에 가중치를 부쳐하여 질의어와 문서들간의 유사도를 계산한다. 다음으로 1차 유사도와 2차 유사도를 결합하여 문서들을 재순위화하고, 임계치보다 낮은 유사도를 갖는 문서들을 필터링함으로써 웹 검색 엔진들의 검색 결과 정확률을 향상시킨다. 실험에서 이러한 문서 필터링을 위한 질의어 확장과 가중치 부여 기법은 정확률-재현율과 F-measure를 이용하여 성능 평가를 할 때 정보 검색 효율성에서 주목할 만한 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.