• Title/Summary/Keyword: Dockyard

Search Result 41, Processing Time 0.024 seconds

Development Case of Regional Materials for Learning of Geology Units, Primary and Middle School Science at Jaeundo (초·중등과학 지질단원의 학습을 위한 자은도의 지역화 자료 개발 사례)

  • Kim, Hai-gyoung
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.13 no.1
    • /
    • pp.110-120
    • /
    • 2020
  • It is generally reported that field learning and a class using regional materials motivate learning and give a positive effect on learning of geology unit, science subject. The purpose of this study is to develop and to suggest regional materials for learning of geology unit, science subject at Jaeundo. The results of this study are as follows. Regional materials were developed at three locations (namjin dockyard area, yangsan beach area and dunjang beach area) of the study area. Namjin dockyard area (A site) is composed of terrain of sea cliff, sand beach and mud flat. Sedimentary rocks, weathering phenomenon of rocks and strata of various shape are distributed in sea cliff of A site. Yangsan beach area (B site) is composed of coastal terrain as sea cliff and sand beach about 1.5km long. Sedimentary rocks and rhyolite are distributed in sea cliff of B site. Tafoni formed by weathering process of rocks are developed on sedimentary rock outcrop of B site. Dunjang beach area (C site) is composed of coastal terrain of sea cliff, sand beach about 2km long and sea stack. Stratified sedimentary rocks are distributed in sea cliff of C site. Sea stack located in near halmi island on the west side of dunjang beach area is a good sample showing erosion process of sea cave for a long time. Unique geomorphology and geology phenomena distributed in 3 sites at Jaeundo can be used as regional materials for learning of geology unit, science subject. And, Regional materials shall be used in conjunction with the text book data of geology units. These 3 sites of the study area are worth using as field learning course for elementary and middle school students.

On the Plastic Deformation of Polar-Class Ship's Single Frame Structures Subjected to Collision Loadings (충돌하중을 받는 빙해선박 단일 늑골 구조의 소성변형에 관한 연구)

  • Min, Dug-Ki;Shin, Dong-Wan;Kim, Sin-Ho;Heo, Yeoung-Mi;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.3
    • /
    • pp.232-238
    • /
    • 2012
  • The effects of temperature on the structural behavior of polar class vessels have been experimentally and numerically investigated. Experiments were carried out on single frame structures made of steel material, DH36, which is used for outer shell of the vessels making transit through the polar region. A knife edge type striker was dropped down onto single frame structures. The temperatures of the single frames were set to $-30^{\circ}C$, $-50^{\circ}C$ and room temperature. The deflection around the mid-point of the single frame was measured and numerically simulated using finite element model. Strain rate effect on the structural behavior has been investigated and turned out that the strain rate effect can be neglected. From the results of the experiment and numerical analyses, it has been noticed that the permanent deflection at lower temperature was reduced due to a temperature hardening of material as expected.

On the Fracture of Polar Class Vessel Structures Subjected to Lateral Impact Loads (횡충격하중을 받는 빙해선박 구조물의 파단에 관한 연구)

  • Min, Dug-Ki;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.4
    • /
    • pp.281-286
    • /
    • 2012
  • Single frame structures with notches were fractured by applying drop impact loadings at room temperature and low temperature. Johnson-Cook shear failure model has been employed to simulate the fractured single frame structures. Through several numerical analyses, material constants for Johnson-Cook shear failure model have been found producing the cracks resulted from experiments. Fracture strain-stress triaxiality curves at both room temperature and low temperature are presented based on the extracted material constants. It is expected that the fracture strain-stress triaxiality curves can offer objective fracture criteria for the assessment of structural fractures of polar class vessel structures fabricated from DH36 steels. The fracture experiments of single frame structures revealed that the structure on low temperature condition fractures at much lower strain than that on room temperature condition despite the same stress states at both temperatures. In conclusion, the material properties on low temperature condition are essential to estimate the fracture characteristics of steel structures operated in the Northern Sea Route.

Motion Analysis of Two Point Moored Oil Tanker (2점 계류된 선박에 대한 운동 해석)

  • Lee, Ho-Young;Lim, Choon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.232-236
    • /
    • 2003
  • The anchor is laid on seabed and the main engine is worked to against incident environmental loads in typoon. As the main engine is broken down in the storm, the anchor chain is cutted and the vessel is drifted. Although a ship is moored by two point mooring lines to keep the her position, a ship is crashed into a rock because of typoon and the accident of oil spilling may be occured. In this paper, we studied the position-keeping of a ship which is analyized based on the slow motion maneuvering equations considering wave, current and wind. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical of MMG. The two point mooring forces are quasisatatically evaluated by using the catenary equation. The coefficeints of wind forces are modeled from Isherwood’s emperical data and the variation of wind speed is estimated by wind spectrum. The nonlinear motions of a two point moored ship are simulated considering wave, current, wind load in time domain.

  • PDF

Development of paint area estimation software for ship compartments and structures

  • Cho, Doo-Yeoun;Swan, Sam;Kim, Dave;Cha, Ju-Hwan;Ruy, Won-Sun;Choi, Hyung-Soon;Kim, Tae-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.198-208
    • /
    • 2016
  • The painting process of large ships is an intense manual operation that typically comprises 9-12% of the total shipbuilding cost. Accordingly, shipbuilders need to estimate the required amount of anti-corrosive coatings and painting resources for inventory and cost control. This study aims to develop a software system which enables the shipbuilders to estimate paint area using existing 3D CAD ship structural models. The geometric information of the ships structure are extracted from the existing shipbuilding CAD/CAM system and used to create painting zones. After specifying the painting zones, users can generate the paint faces by clipping structural parts inside each zone. Finally, the paint resources may be obtained from the product of the paint areas and required paint thickness. Implementing the developed software system to real shipbuilders' operations has contributed to improved productivity, faster resource estimation, better accuracy, and fewer coating defects over their conventional manual calculation methods for painting resource estimation.

A Study on the Maneuvering Hydrodynamic Derivatives Estimation Applied the Stern Shape of a Vessel (선미 형상을 반영한 조종 유체력 미계수 추정에 관한 연구)

  • Yoon, Seung-Bae;Kim, Dong-Young;Kim, Sang-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.1
    • /
    • pp.76-83
    • /
    • 2016
  • The various model tests are carried out to estimate and verify a ship performance in the design stage. But in view of the cost, the model test should be applied to every project vessel is very inefficient. Therefore, other methods of predicting the maneuverability with confined data are required at the initial design stage. The purpose of this study is to estimate the hydrodynamic derivatives by using the multiple regression analysis and PMM test data. The characteristics of the stern shape which has an important effect on the maneuverability are applied to the regression analysis in this study. The correlation analysis is performed to select the proper hull form coefficients and stern shape factors used as the variables in the regression analysis. The comparative analysis of estimate results and model test results is conducted on two ships to investigate the effectiveness of the maneuvering hydrodynamic derivatives estimation applied the stern shape. Through the present study, it is verified that the estimation using the stern shape factors as the variables are valid when the stern shape factors are located in the center of the database.

Study on Effective Arrangement of Main Engine Top-Bracing (메인 엔진 탑-브레이싱의 효과적 배치에 관한 연구)

  • Choung, Joon-Mo;Min, Dug-Ki
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.289-298
    • /
    • 2011
  • This paper provides procedures to effectively determine arrangement of hydraulic type top-bracings, which are popular for the main engine of the mid and large sized commercial vessels. Analyzing the operation mechanism of hydraulic top-bracing, ideal unified nonlinear stiffness curve is presented for linear frequency response analysis and nonlinear transient response analysis. Nonlinear stiffnesses of the curve are determined based on the regression analysis of test results. It is noted from linear frequency response analysis, initial setting pressure is most important among the setting values of the other stiffness intervals. From transient response analyses for two top-bracing arrangement scenarios, it is recognized that, as far as initial setting pressure is well controlled for the concerning vessels, only two top-bracings are enough to suppress H-mode excitation forces from main engine.

On the Mechanical Properties at Low Temperatures for Steels of Ice-Class Vessels (빙해선박용 강재의 저온특성에 관한 연구)

  • Min, Dug-Ki;Shim, Chun-Sik;Shin, Dong-Wan;Cho, Sang-Rai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.171-177
    • /
    • 2011
  • Tensile tests were conducted at low temperatures for the steel materials which are used for outer shell of the vessels making transit through the polar regions. The selected steel materials were GL-DH32, GL-DH36 and GL-EH36. In comparison with the results at room temperature, the yield stress increases approximately by 10 to 13 percent at $-30^{\circ}C$ and by 13 to 19 percent at $-50^{\circ}C$ while the tensile strength increases about by 9 percent at $-30^{\circ}C$ and 11 to 14 percent at $-50^{\circ}C$. To obtain true stress-true strain, i.e. correct plastic hardening characteristics, Bridgman's(1952) necking correction formula was introduced taking triaxial state of stresses after onset of diffuse necking into consideration. Photographs of fractured surfaces were taken by using Scanning Electron Microscope immedately after tensile tests completed and one for GL-EH36 has been presented in this paper.

On the Design of the Brackets without Flange in Ships' Structure (플랜지가 없는 선체 브라켓의 설계에 관한 연구)

  • Lee, Joo-Sung;Lee, Dong-Bu;Han, Doo-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.2 s.146
    • /
    • pp.197-205
    • /
    • 2006
  • In general, brackets found at tank boundary are design according to the Classification Society Rule. Since much man power is needed in manufacturing the brackets stiffened by flange, it is necessary to suggest alternative designs, of which flanges are removed, through the rigorous structural analysis. In this paper non-linear structural analysis for brackets with and/or without flange have been carried out to examine their structural behavior and ultimate strengths. Alternative designs for brackets are suggested based on the results of ultimate strength analysis so that the alternative brackets have the similar level of strength and stiffness to the original brackets. It has been seen that the structural safety of alternative brackets proposed in this paper are beyond the appropriate level. The primary benefit of replacing the original brackets by the alternatives is the reduction of man power in manufacturing brackets and 10 to 15% weight saving can be expected in additional. This paper ends with some comments about the extension of the present study.

Prediction of Ship Manoeuvrability in Initial Design Stage Using CFD Based Calculation

  • Cho, Yu-Rim;Yoon, Bum-Sang;Yum, Deuk-Joon;Lee, Myen-Sik
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.1
    • /
    • pp.11-24
    • /
    • 2007
  • Better prediction of a ship's manouevrabilty in initial design stage is becoming more, important as IMO manoeuvring criteria has been activated in the year of 2004. In the present study, in order to obtain more exact and reliable results for ship manoeuvrability in the initial design stage, numerical simulation is carried out by use of RANS equation based calculation of hydrodynamic forces exerted upon the ship hull. Other forces such as rudder force and propeller force are estimated by one of the empirical models recommended by MMG Group. Calculated hydrodynamic force coefficients are compared with those obtained by empirical models. Standard manoeuvring simulations such as turning circle and zig-zag are also carried out for a medium size Product Carrier and the results are compared with those of pure empirical models and manoeuvring sea trial. Generally good qualitative agreement is obtained in hydrodynamic forces due to steady oblique motion and steady turning motion between the results of CFD calculation and those of MMG model, which is based on empirical formulas. The results of standard manoeuvring simulation also show good agreement with sea trial results.