• Title/Summary/Keyword: Docking technology

Search Result 162, Processing Time 0.02 seconds

Single Frequency GPS Relative Navigation for Autonomous Rendezvous and Docking Mission of Low-Earth Orbit Cube-Satellites

  • Shim, Hanjoon;Kim, O-Jong;Yu, Sunkyoung;Kee, Changdon;Cho, Dong-Hyun;Kim, Hae-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.357-366
    • /
    • 2020
  • This paper addressed a relative navigation method for autonomous rendezvous and docking of cube-satellites using single frequency Differential GPS (DGPS) under the intermittent communication between satellites. Since the ionospheric error of GPS measurement is variable depending on the visible satellites, a few meters error of relative navigation is occurred in the Low-Earth Orbit (LEO) environment. Therefore, it is essential to remove the ionospheric error to perform relative navigation. Besides, an intermittent communication period for receiving GPS measurements of the target satellite is limited for getting information every sampling time. To solve this problem, a method combining range domain DGPS and orbit propagation is proposed in this paper. The proposed method improves the performance of DGPS by using Hatch filter and solves an intermittent communication problem by estimating the relative position and velocity using Hill-Clohessy-Wiltshire Equation. Through the simulation, it is verified that the suggested algorithm provides the relative position error within RMS 0.5 m and the relative velocity error within RMS 3 cm/s. Furthermore, it has the advantage that it is suitable for real-time implementation using single-frequency GPS measurements and is computationally efficient.

Efficiency of Lamarckian Genetic Algorithm in Molecular Docking of Phenylaminopyrimidine (PAP) Derivatives: A Retrospect Study

  • Ratilla, Eva Marie A.;Juan, Amor A. San
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.203-209
    • /
    • 2004
  • Molecular docking using Lamarckian genetic algorithm of AutoDock 3.0 (AD3) was employed to understand in retrospect the selectivity of phenylaminopyrimidine (PAP) derivatives against the kinase domain c-Abl, implicated in chronic myelogenous leukemia (CML). The energetics of protein-ligand complex was scored using AD3 to identify active drug conformations while Ligplot and ligand protein contact (LPC) programs were used to probe schematic molecular recognition of the bound inhibitor to the protein. Results signify correlation between model and crystal structures of STI-571 compound or Imatinib (IM), a PAP derivative and now clinically proven for its efficacy in CML. A prospect active form Abl inhibitor scaffold from matlystatin class of compounds will be published elsewhere.

  • PDF

Evaluation of Advanced Structure-Based Virtual Screening Methods for Computer-Aided Drug Discovery

  • Lee, Hui-Sun;Choi, Ji-Won;Yoon, Suk-Joon
    • Genomics & Informatics
    • /
    • v.5 no.1
    • /
    • pp.24-29
    • /
    • 2007
  • Computational virtual screening has become an essential platform of drug discovery for the efficient identification of active candidates. Moleculardocking, a key technology of receptor-centric virtual screening, is commonly used to predict the binding affinities of chemical compounds on target receptors. Despite the advancement and extensive application of these methods, substantial improvement is still required to increase their accuracy and time-efficiency. Here, we evaluate several advanced structure-based virtual screening approaches for elucidating the rank-order activity of chemical libraries, and the quantitative structureactivity relationship (QSAR). Our results show that the ensemble-average free energy estimation, including implicit solvation energy terms, significantly improves the hit enrichment of the virtual screening. We also demonstrate that the assignment of quantum mechanical-polarized (QM-polarized) partial charges to docked ligands contributes to the reproduction of the crystal pose of ligands in the docking and scoring procedure.

Admittance Control for Satellite Docking Ground Testing System (위성 도킹 지상시험장치의 어드미턴스 제어)

  • Heejin Woo;Youngjin Choi;Daehee Won
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 2024
  • The paper presents a hardware-in-the-loop (HIL) system designed for satellite movement testing in the microgravity environment on the ground with two industrial robots. Especially, the paper deals with the contact between satellites during rendezvous and docking simulations of satellites using a robotic HILS system. For this purpose, the admittance control method plays a core role in preventing damage to the satellite or robot from contact force between satellites. The coordinate frames are transformed into the mass center of the satellite and the admittance control at the level of exponential coordinates is adopted to actively use the properties of Lie groups related to tracking errors. These methods effectively mitigate the risk of robot damage during inter-satellite contact and ensure efficient tracking performance of satellite movements.

Structural analysis, anti-inflammatory activity of the main water-soluble acidic polysaccharides (AGBP-A3) from Panax quinquefolius L berry

  • Zhihao Zhang;Huijiao Yan;Hidayat Hussain;Xiangfeng Chen;Jeong Hill Park;Sung Won Kwon;Lei Xie;Bowen Zheng;Xiaohui Xu;Daijie Wang;Jinao Duan
    • Journal of Ginseng Research
    • /
    • v.48 no.5
    • /
    • pp.454-463
    • /
    • 2024
  • Background: Panax quinquefolius L, widely recognized for its valuable contributions to medicine, has aroused considerable attention globally. Different from the extensive research has been dedicated to the root of P. quinquefolius, its berry has received relatively scant focus. Given its promising medicinal properties, this study was focused on the structural characterizations and anti-inflammatory potential of acidic polysaccharides from the P. quinquefolius berry. Materials and methods: P. quinquefolius berry was extracted with hot water, precipitated by alcohol, separated by DEAE-52-cellulose column to give a series of fractions. One of these fractions was further purified via Sephadex G-200 column to give three fractions. Then, the main fraction named as AGBP-A3 was characterized by methylation analysis, NMR spectroscopy, etc. Its anti-inflammatory activity was assessed by RAW 264.7 cell model, zebrafish model and molecular docking. Results: The main chain comprised of α-L-Rhap, α-D-GalAp and β-D-Galp, while the branch consisted mainly of α-L-Araf, β-D-Glcp, α-D-GalAp, β-D-Galp. The RAW264.7 cell assay results showed that the inhibition rates against IL-6 and IL-1β secretion at the concentration of 625 ng/mL were 24.83 %, 11.84 %, while the inhibition rate against IL-10 secretion was 70.17 % at the concentration of 312 ng/mL. In the zebrafish assay, the migrating neutrophils were significantly reduced in number, and their migration to inflammatory tissues was inhibited. Molecular docking predictions correlated well with the results of the anti-inflammatory assay. Conclusion: The present study demonstrated the structure of acidic polysaccharides of P. quinquefolius berry and their effect on inflammation, providing a reference for screening anti-inflammatory drugs.

Microwave-Accelerated Click Chemistry: Expeditious Synthesis of Novel Triazole-linked Salicylic β-D-O-Glycosides with PTP1B Inhibitory Activity

  • Yang, Jin-Wei;Li, Cui;He, Xiao-Peng;Zhao, Hong;Gao, Li-Xin;Zhang, Wei;Shi, Xiao-Xin;Tang, Yun;Li, Jia;Chen, Guo-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3359-3365
    • /
    • 2010
  • The incorporation of microwave irradiation with the prevalent "click chemistry" is currently of considerable synthetic interest. We describe here the introduction of such laboratorial shortcut into carbohydrate-based drug discovery, resulting in the rapid formation of a series of triazole-linked salicylic $\beta$-D-O-glycosides with biological activities. All "clicked" products were achieved in excellent yields ($\approx$ 90%) within only a quarter. In addition, based on the structural characteristics of the afforded glycomimetics, their inhibitory activities were evaluated toward protein tyrosine phosphatases 1B (PTP1B) and a panel of homologous protein tyrosine phosphatases (PTPs). Docking simulation was also conducted to plausibly propose binding modes of this glycosyl salicylate series with the enzymatic target.

Reversal of Multidrug Resistance in Mouse Lymphoma Cells by Extracts and Flavonoids from Pistacia integerrima

  • Rauf, Abdur;Uddin, Ghias;Raza, Muslim;Ahmad, Bashir;Jehan, Noor;Siddiqui, Bina S;Molnar, Joseph;Csonka, Akos;Szabo, Diana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.1
    • /
    • pp.51-55
    • /
    • 2016
  • Phytochemical investigation of Pistacia integerrima has highlighted isolation of two known compounds naringenin (1) and dihydrokaempferol (2). A crude extract and these isolated compounds were here evaluated for their effects on reversion of multidrug resistance (MDR) mediated by P-glycoprotein (P-gp). The multidrug resistance P-glycoprotein is a target for chemotherapeutic drugs from cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma cells showed excellent MDR reversing effects in a dose dependent manner. In-silico molecular docking investigations demonstrated a common binding site for Rhodamine123, and compounds naringenin and dihydrokaempferol. Our results showed that the relative docking energies estimated by docking softwares were in satisfactory correlation with the experimental activities. Preliminary interaction profile of P-gp docked complexes were also analysed in order to understand the nature of binding modes of these compounds. Our computational investigation suggested that the compounds interactions with the hydrophobic pocket of P-gp are mainly related to the inhibitory activity. Moreover this study s a platform for the discovery of novel natural compounds from herbal origin, as inhibitor molecules against the P-glycoprotein for the treatment of cancer.

Isolation and Structure Elucidation, Molecular Docking Studies of Screlotiumol from Soil Borne Fungi Screlotium rolfsii and their Reversal of Multidrug Resistance in Mouse Lymphoma Cells

  • Ahmad, Bashir;Rizwan, Muhammad;Rauf, Abdur;Raza, Muslim;Azam, Sadiq;Bashir, Shumaila;Molnar, Joseph;Csonka, Akos;Szabo, Diana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2083-2087
    • /
    • 2016
  • A new compound namely (13-(3,3-dihydroxypropyl)-1,6-dihydroxy-3,4-dihydro-1H-isochromen-8(5H)-one (1) was isolated from an ethyl acetate extract of the borne fungi Screlotium rolfsii. Its chemical structure was elucidated by spectroscopic analysis. Screlotiumol 1 were evaluated for their effects on the reversion of multidrug resistant (MDR) mediated by P-glycoprotein (P-gp) of the soil borne fungi. The multidrug resistant P-glycoprotein is a target for chemotherapeutic drugs in cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma which showed excellent MDR reversing effect in a dose dependent manner against mouse T-lymphoma cell line. Moreover, molecular docking studies of compound-1 also showed better results as compared with the standard. Therefore the preliminary results obtained from this study suggest that screlotiumol 1 could be used as a potential agent for the treatment of cancer.

A Molecular Modeling Study of AAD16034

  • Cho, Hoon;Choi, Cheol-Hee;Yoo, Kyung-Ho;Cho, Seung-Joo
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.307-310
    • /
    • 2008
  • AAD16034 is an alginate lyase from Pseudoalteromonas sp. IAM14594. A very close homologue with known 3D structure exists (marine bacterium Pseudoalteromonas sp. strain no. 272). A three-dimensional structure of AAD16034 was generated based on this template (PDB code: 1J1T) by comparative modeling. The modeled enzyme exhibited a jelly-roll like structure very similar to its template structure. Both enzymes possess the characteristic alginate sequence YFKhG+Y-Q. Since AAD16034 displays enzymatic activity for poly-M alginate, docking of a tri-mannuronate into the modeled structure was performed. Two separate and adjacent binding sites were found. The ligand was accommodated inside each binding site. By considering both binding sites, a plausible binding pose for the poly-M alginate polymer could be deduced. From the modeled docking pose (i.e., the most important factor that attracts alginate polymer into this lyase) the most likely interaction was electrostatic. In accordance with a previous report, the hydroxyl group of Y345 was positioned close to the ${\alpha}$-hydrogen of ${\beta}$-mannuronate, which was suitable to initiate a ${\beta}$-elimination reaction. K347 was also very near to the carboxylatemoiety of the ligand, which might stabilize the dianion intermediate during the ${\beta}$-elimination reaction. This implies that the characteristic alginate sequence is absolutely crucial for the catalysis. These results may be exploited in the design of novel enzymes with desired properties.