• 제목/요약/키워드: Docking Station

검색결과 30건 처리시간 0.023초

전자기파의 감쇄신호를 이용한 무인 잠수정의 도킹시스템 개발 (Docking System for Unmanned Underwater Vehicle using Reduced Signal Strength Indicator)

  • 이기현;김진현
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.830-836
    • /
    • 2012
  • According to increasing the importance of underwater environments, the needs of UUV are growing. This paper represents the mechanism and algorithm of UUV docking system with 21-inch torpedo tubes for military submarines as a docking station. To improve the reliability of the docking, torpedo tubes launch a wired ROV and next the ROV combined with UUV is retrieved. For estimating the relative position between the ROV and UUV, in this paper, combining RF sensors and vision system is proposed. The RSSI method of RF sensors is used to estimate the distance and the optical image is combined for the directional information.

크로스도킹 거점 결정을 위한 연구 -지역거점을 중심으로- (Study for determining cross docking point local bases approach)

  • 김기홍
    • 대한안전경영과학회지
    • /
    • 제19권3호
    • /
    • pp.129-135
    • /
    • 2017
  • The respective delivering vehicle loaded with the own cargo moves into the respective delivery area. At the base, the delivery points D1 and D2, for example, have the same starting point but the destination is different. The average delivering time of the delivery vehicle is mostly more than 8 hours a day. Therefore, the efficiency of delivery is generally low. In this study, the deliveries will be forwarded from a base station to a delivery point where cross docking will be applied to a single vehicle, and will be distributed from the cross docking point through cross docking. If the distribution is implemented, one vehicle will not have to be operated from the base to the cross docking point. In that case, logistics cost will be reasonably saved by the reduction of transportation cost and labor time. If one vehicle only runs from the base to the cross docking point, each vehicle will be operated in two shifts, and the vehicle operation can be efficiently implemented. This research model is based on the assumption that the 3 types of ratios between the traffic volume of the vehicles starting at the base and the vehicles waiting at the cross docking point are set to the first ratio of 30% to 70%, the second ratio of 50% to 50% and the final ratio of 70% to 30%. As a result of the study, The delivery time in the cross docking point is much higher than that in present on the condition that the cargo volume in the D2 area is more than 50%. Likewise, the delivery time is slightly higher on the condition that the cargo volume is less than 50%. Time is reduced in terms of 50% model like AS-IS model.

이동식 미디어 플레이어를 이용한 도킹 스테이션 설계 (Docking Station Implementation using Portable Media Player)

  • 정은숙;류광렬
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.938-941
    • /
    • 2011
  • 본 연구에서 디지털 방송 수신 및 저장을 위하여 이동식 멀티미디어 플레이어를 이용하여 도킹스테이션을 설계하였다. 디지털 방송 콘텐츠 수신 및 저장은 셋탑박스를 이용하며 이동식 미디어 플레이어와 탈부착 기능을 부가하였고, 이동식 미디어플레이어의 OS는 안드로이드를 사용하였다. 구현결과 이 시스템은 디지털방송, 지상파, 위성방송, DMB 등의 수신이 가능하며 비디오 영상은 실시간으로 저장된다.

  • PDF

비쥬얼 서보 제어기를 이용한 자율무인잠수정의 도킹 (Underwater Docking of an AUV Using a Visual Servo Controller)

  • 이판묵;전봉환;이종무
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.142-148
    • /
    • 2002
  • Autonomous underwater vehicles (AUVs) are unmanned underwater vessels to investigate sea environments, oceanography and deep-sea resources autonomously. Docking systems are required to increase the capability of the AUVs to recharge the batteries and to transmit data in real time for specific underwater works, such as repeated jobs at sea bed. This paper presents a visual servo control system for an AUV to dock into an underwater station with a camera mounted at the nose center of the AUV. To make the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and derives a state equation for the visual servoing AUV. This paper proposes a discrete-time MIMO controller minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servoing AUV, simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

  • PDF

Integrative applications of network pharmacology and molecular docking: An herbal formula ameliorates H9c2 cells injury through pyroptosis

  • Zhongwen Qi;Zhipeng Yan;Yueyao Wang;Nan Ji;Xiaoya Yang;Ao Zhang;Meng Li;Fengqin Xu;Junping Zhang
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.228-236
    • /
    • 2023
  • Background: QiShen YiQi pills (QSYQ) is a Traditional Chinese Medicine (TCM) formula, which has a significant effect on the treatment of patients with myocardial infarction (MI) in clinical practice. However, the molecular mechanism of QSYQ regulation pyroptosis after MI is still not fully known. Hence, this study was designed to reveal the mechanism of the active ingredient in QSYQ. Methods: Integrated approach of network pharmacology and molecular docking, were conducted to screen active components and corresponding common target genes of QSYQ in intervening pyroptosis after MI. Subsequently, STRING and Cytoscape were applied to construct a PPI network, and obtain candidate active compounds. Molecular docking was performed to verify the binding ability of candidate components to pyroptosis proteins and oxygen-glucose deprivation (OGD) induced cardiomyocytes injuries were applied to explore the protective effect and mechanism of the candidate drug. Results: Two drug-likeness compounds were preliminarily selected, and the binding capacity between Ginsenoside Rh2 (Rh2) and key target High Mobility Group Box 1 (HMGB1)was validated in the form of hydrogen bonding. 2 μM Rh2 prevented OGD-induced H9c2 death and reduced IL-18 and IL-1β levels, possibly by decreasing the activation of the NLRP3 inflammasome, inhibiting the expression of p12-caspase1, and attenuating the level of pyroptosis executive protein GSDMD-N. Conclusions: We propose that Rh2 of QSYQ can protect myocardial cells partially by ameliorating pyroptosis, which seems to have a new insight regarding the therapeutic potential for MI.

Visual Servoing Control of a Docking System for an Autonomous Underwater Vehicle (AUV)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Chong-Moo;Hong, Young-Hwa;Oh, Jun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.109.5-109
    • /
    • 2002
  • Autonomous underwater vehicles (AUVs) are unmanned underwater vessels to investigate sea environments, oceanography and deep-sea resources autonomously. Docking systems are required to increase the capability of the AUVs to recharge the batteries and to transmit data in real time in underwater. This paper presents a visual servo control system for an AUV to dock into an underwater station with a camera. To make the visual servo control system , this paper derives an optical flow model of a camera mounted on an AUV, where a CCD camera is installed at the nose center of the AUV to monitor the docking condition. This paper combines the optical flow equation of the camera with the AUV's equation o...

  • PDF

단일 카메라를 이용한 비쥬얼 서보 자율무인잠수정의 수중 도킹 (Underwater Docking of a Visual Servoing Autonomous Underwater Vehicle Using a Single Camera)

  • 이판묵;전봉환;홍영화;오준호;김시문;이계홍
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.316-320
    • /
    • 2003
  • This paper introduces an autonomous underwater vehicle (AUV) model, ASUM, equipped with a visual servo control system to dock into an underwater station with a camera and motion sensors. To make a visual servoing AUV, this paper implemented the visual servo control system designed with an augmented state equation, which was composed of the optical flow model of a camera and the equation of the AUV's motion. The system design and the hardware configuration of ASUM are presented in this paper. ASUM recognizes the target position by processing the captured image for the lights, which are installed around the end of the cone-type entrance of the duct. Unfortunately, experiments are not yet conducted when we write this article. The authors will present the results for the AUV docking test.

  • PDF

광센서 배열을 이용한 무인잠수정의 종단유도장치 시스템 (Underwater Guidance System for AUV using Optical Sensor Array)

  • 손현중;최형식;강진일;서주노;정성훈;김준영
    • 한국항행학회논문지
    • /
    • 제23권2호
    • /
    • pp.125-133
    • /
    • 2019
  • 본 논문에서는 수중에서 광과광센서를 이용하여 AUV의 도킹스테이션에의 도킹에 대한 새로운 연구를 하였다. 이를 위해 LED를 유도광원으로 사용하는 도킹스테이션과렌즈, 광 변위센서, 신호처리기, 연산처리기로 구성된 센서시스템 무인잠수정에 장착한 무인잠수정의 종단유도장치 시스템을 제안하였다. LED 복사광을 이용해 정밀한 상대각도 측정 정밀도를 얻을 수 있도록 집광렌즈 및 광센서 시스템의 원리해석과 이를 검증하기 위해 집광렌즈와 광센서 시스템을 직접 제작하고 기초실험을 수행하였으며 제작한 광학센서를 이용한 AUV와 도킹시스템을 제작하고 수조에서 기본적인 도킹시험을 수행하여 새로운 도킹 방법으로의 가능성을 검증하였다.

모바일 로봇의 목표물 추적을 위한 이미지 궤환 제어 (A Image Feedback control of Mobile Robot for Target Tracking)

  • 황원준;이우송
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.90-98
    • /
    • 2015
  • This research propose with image-based visual a new approach to design a feedback control of mobile robot. because mobile robot must be recharged periodically, it is necessary to detect and move to docking station. Generally, laser scanner is used for detect of position of docking station. CCD Camera is also used for this purpose. In case of using camera, the position-based visual servoing method is widely used. But position-based visual servoing method requires the accurate calibration and it is hard and complex work. Another method using cameras is inmage-based visual feedback. Recently, image based visual feedback is widely used for robotic application. But it has a problem that cannot have linear trajectory in the 3-dimensional space. Because of this weak point, image-based visual servoing has a limit for real application. in case of 2-dimensional movement on the plane, it has also similar problem. In order to solve this problem, we point out the main reason of the problem of the resolved rate control method that has been generally used in the image-based visual servoing and we propose an image-based visual feedback method that can reduce the curved trajectory of mobile robot in th cartesian space.

이동로봇의 자동충전을 위한 영상기반 비쥬얼 서보잉 방법 (Image-based Visual Servoing for Automatic Recharging of Mobile Robot)

  • 송호범;조재승
    • 제어로봇시스템학회논문지
    • /
    • 제13권7호
    • /
    • pp.664-670
    • /
    • 2007
  • This study deals with image-based visual servoing for automatic recharging of mobile robot. Because mobile robot must be recharged periodically, it is necessary to detect and move to docking station. Generally, laser scanner is used for detect of position of docking station. CCD Camera is also used for this purpose. In case of using cameras, the position-based visual servoing method is widely used. But position-based visual servoing method requires the accurate calibration and it is hard and complex work. Another method using cameras is image-based visual servoing. Recently, image based visual servoing is widely used for robotic application. But it has a problem that cannot have linear trajectory in the 3-dimensional space. Because of this weak point, image-based visual servoing has a limit for real application. In case of 2-dimensional movement on the plane, it has also similar problem. In order to solve this problem, we point out the main reason of the problem of the resolved rate control method that has been generally used in the image-based visual servoing and we propose an image-based visual servoing method that can reduce the curved trajectory of mobile robot in the cartesian space.