• Title/Summary/Keyword: Docking Simulation

Search Result 93, Processing Time 0.022 seconds

A Sliding Mode Control of an Underwater Robotic Vehicle under the Influence of Thrust Dynamics (추진기의 동역학을 고려한 무인잠수정의 슬라이딩 모드 제어)

  • Choi, Hyeung-Sik;Park, Han-Il;Roh, Min-Shik;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1203-1211
    • /
    • 2009
  • The dynamics of underwater vehicles can be greatly influenced by the dynamics of the vehicle thrusters. The control of the state of the hovering or very slow motion of the underwater vehicle is most important for automatic docking or control of the manipulator of the vehicle. The dynamics of the thruster based on the electric motor is nonlinear and has uncertain parameters. Since the dynamics of the vehicle coupled with the dynamics of the thruster is nonlinear and has uncertain parameters, a robust control is very effective for a desired motion tracking of the uncertain and nonlinear vehicle. In this paper a study was performed on the robust control scheme of the very slow motion or hovering motion of the underwater vehicle actuated by the electric motor. Also, a concurrent control on the state of the vehicle with nonlinearity and uncertain parameters was performed. A sliding mode control algorithm out of robust controllers was designed and applied, which compensates the nonlinear forces and uncertain parameters of the vehicle and actuator. Through a computer simulation, the proposed control scheme was compared with a linear PD controller and its superior performance was validated.

Relative Navigation Study Using Multiple PSD Sensor and Beacon Module Based on Kalman Filter (복수 PSD와 비콘을 이용한 칼만필터 기반 상대항법에 대한 연구)

  • Song, Jeonggyu;Jeong, Junho;Yang, Seungwon;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.3
    • /
    • pp.219-229
    • /
    • 2018
  • This paper proposes Kalman Filter-based relative navigation algorithms for proximity tasks such as rendezvous/docking/cluster-operation of spacecraft using PSD Sensors and Infrared Beacon Modules. Numerical simulations are performed for comparative analysis of the performance of each relative-navigation technique. Based on the operation principle and optical modeling of the PSD Sensor and the Infrared Beacon Module used in the relative navigation algorithm, a measurement model for the Kalman filter is constructed. The Extended Kalman Filter(EKF) and the Unscented Kalman Filter(UKF) are used as probabilistic relative navigation based on measurement fusion to utilize kinematics and dynamics information on translational and rotation motions of satellites. Relative position and relative attitude estimation performance of two filters is compared. Especially, through the simulation of various scenarios, performance changes are also investigated depending on the number of PSD Sensors and IR Beacons in target and chaser satellites.

Monosaccharide as a Central Scaffold Toward the Construction of Salicylate-Based Bidentate PTP1B Inhibitors via Click Chemistry

  • Tang, Yan-Hui;Hu, Min;He, Xiao-Peng;Fahnbulleh, Sando;Li, Cui;Gao, Li-Xin;Sheng, Li;Tang, Yun;Li, Jia;Chen, Guo-Rong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1000-1006
    • /
    • 2011
  • The discovery of carbohydrate-based bioactive compounds has recently received considerable interest in the drug development. This paper stresses on the application of 1-methoxy-O-glucoside as the central scaffold, whereas salicylic pharmacophores were introduced with diverse spatial orientations probing into the structural preference of an enzymatic target, i.e. protein tyrosine phosphatase 1B (PTP1B). By employing regioselective protection and deprotection strategy, 2,6-, 3,4-, 4,6- and 2,3-di-O-propynyl 1-methoxy-O-glucosides were previously synthesized and then coupled with azido salicylate via click chemistry in forming the desired bidentate salicylic glucosides with high yields. The inhibitory assay of the obtained triazolyl derivatives leads to the identification of the 2,3-disubstituted salicylic 1-methoxy-O-glucoside as the structurally privileged PTP1B inhibitor among this bidentate compound series with micromole-ranged $IC_{50}$ value and reasonable selectivity over other homologous PTPs tested. In addition, docking simulation was conducted to propose a plausible binding mode of this authorized inhibitor with PTP1B. This research might furnish new insight toward the construction of structurally different bioactive compounds based on the monosaccharide scaffold.