• 제목/요약/키워드: Dobson spectrophotometer

검색결과 8건 처리시간 0.019초

돕슨 분광광도계(No.124)의 오존 자동관측시스템화 (Automation of Dobson Spectrophotometer(No.124) for Ozone Measurements)

  • 김준;박상서;문경정;구자호;이윤곤;;조희구
    • 대기
    • /
    • 제17권4호
    • /
    • pp.339-348
    • /
    • 2007
  • Global Environment Laboratory at Yonsei University in Seoul ($37.57^{\circ}N$, $126.95^{\circ}E$) has carried out the ozone layer monitoring program in the framework of the Global Ozone Observing System of the World Meteorlogical Organization (WMO/GAW/GO3OS Station No. 252) since May of 1984. The daily measurements of total ozone and the vertical distribution of ozone amount have been made with the Dobson Spectrophotometer (No.124) on the roof of the Science Building on Yonsei campus. From 2004 through 2006, major parts of the manual operations are automated in measuring total ozone amount and vertical ozone profile through Umkehr method, and calibrating instrument by standard lamp tests with new hardware and software including step motor, rotary encoder, controller, and visual display. This system takes full advantage of Windows interface and information technology to realize adaptability to the latest Windows PC and flexible data processing system. This automatic system also utilizes card slot of desktop personal computer to control various types of boards in the driving unit for operating Dobson spectrophotometer and testing devices. Thus, by automating most of the manual work both in instrument operation and in data processing, subjective human errors and individual differences are eliminated. It is therefore found that the ozone data quality has been distinctly upgraded after automation of the Dobson instrument.

돕슨 분광광도계를 이용한 서울 상공의 오존층 감시 및 장기변화 경향(1985~2017) (Monitoring and Long-term Trend of Total Column Ozone from Dobson Spectrophotometer in Seoul (1985~2017))

  • 박상서;조희구;구자호;임현광;이하나;김준;이윤곤
    • 대기
    • /
    • 제29권1호
    • /
    • pp.13-20
    • /
    • 2019
  • Since 1985, the Dobson Spectrophotometer has been operated at Yonsei University, and this instrument has monitored the daily representative total ozone in Seoul. Climatological value for total ozone in Seoul is updated by using the daily representative observation data from 1985 to 2017. After updating the daily representative total ozone data, seasonal and inter-annual variation of total ozone in Seoul is also estimated after calculating inter-comparison between ground (Dobson Spectrophotometer) and satellite [Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI)] observations. The global average of total ozone measured by satellite is 297 DU, and its recent amount is about 3.5% lower than the global amount in 1980s. In Seoul, daily representative total ozone is ranged from 225 DU to 518 DU with longterm mean value of 324.3 DU. In addition, monthly mean total ozone is estimated from 290 DU (October) to 362 DU (March), and yearly average of total ozone have been continuously increased since 1985. For the long-term trend of total ozone in Seoul, this study is considered the seasonal variation, Solar Cycle, and Quasi-Biennial Oscillation. In addition to the natural oscillation effect, this study also considered to the long-term variation of sudden increase of total ozone due to the secondary ozone peak. By considering these natural effects, the long-term total ozone trends from 1985 to 2017 are estimated to be 1.11~1.46%/decade.

지상과 위성으로부터 측정된 서울시 대기 중 오존 전량의 상호 비교 (Inter-comparison of Total Ozone from the Ground-based and Satellite Measurements at Seoul)

  • 홍현기;김준;이한림;조희구
    • 대기
    • /
    • 제23권2호
    • /
    • pp.123-130
    • /
    • 2013
  • Despite the extensive investigations to understand the difference between ground-based and space-borne measurements, there still exist differences in total ozone (TO) measured at those two different platforms. Comparisons were carried out for the first time between TO data obtaiend from the ground based Dobson and Brewer spectrophotometers, and the Ozone Monitoring Instrument (OMI) on board EOS-Aura satellite in a megacity site in Northeast Asia. The TO values retrieved by the OMI-DOAS (Differential optical absorption spectroscopy) algorithm tend to be lower than those measured by the ground based sensors in spring and summer as well as the low solar zenith angle condition. We found that such underestimation of the OMI-DOAS TO is caused by tropospheric ozone underestimated by the OMI-DOAS algorithm when tropospheric ozone are significantly enhanced.

Characteristics on the Variations of the Total Ozone over Pohang (1994-2004) using the Brewer Spectrophotometer and TOMS

  • Hong Gi-Man;Choi Byoung-Cheol;Goo Tae-Young;Lim Jae-Chul;Lim Byung-Sook;Baek Moon-Hee
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.388-391
    • /
    • 2005
  • The characteristics of the total ozone variations measured by the ground-based Brewer Ozone Spectrophotometer and the Total Ozone Mapping Spectrometer (TOMS) over Pohang are statistically examined from January 1994 to December 2004. First of all, in the correlation analysis of the total ozone measured from the Brewer Ozone Spectrophotometer and the TOMS, the correlation coefficient was 0.88 and the used data were 2190. The annual mean value of the total ozone is 311 DU with the standard deviation of 13 DU. The maximum and the minimum value were found in March (343 DU) and in September (282 DU), respectively. It was also revealed that the longest seasonal variation is in Spring (341 DU) and the smallest is in Autumn (283 DU). The time series data of the total ozone indicates that the annual variation is significant and the variations for three months and six months are relatively weak. Finally, the annual mean total ozones in Pohang (Brewer), Seoul (Brewer) and Busan (TOMS) are 312 DU, 324 DU and 304 DU, respectively.

  • PDF

ROCKET MEASUREMENT OF MIDDLE ATMOSPHERIC OZONE CONCENTRATION PROFILE BY KSR-II

  • ;이수진;조희규;박병관;이재덕;최현돈;조광래
    • Journal of Astronomy and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.391-400
    • /
    • 1998
  • KSR-II, a two-stage sounding rocket of KARI was launched successfully at the west coast of the Korean Peninsula at 1000LST, June 11, 1998. For the ozone measurement mission, 8-channel UV and visible radiometers were onboard the rocket. The rocket measured the first in situ stratospheric and mesospheric ozone density profile over Korea during its ascending phase using the radiometer. Comparisons with Dobson spectrophotometer, ozonesonde, and HALOE onboard the UARS are shown together. Our results are in reasonable agreements with others.

  • PDF

Stratospheric Ozone Observations in Korea

  • Cho, Hi-Ku;Kim, Joon;Chung, Sung-Rae
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • 제24권1호
    • /
    • pp.19-27
    • /
    • 1996
  • The ozone layer monitoring program of the Global Environment Laboratory at Yonsei University in Seoul, established as one of the Global Ozone Observing System($GO_3OS$) of the World Meteorological Organization(WMO), has been carried out daily by measuring total ozone and its vertical distribution using a Dobson Ozone Spectrophotometer(Beck #124) since 1984. In this paper, we review the organization and the historical background of ozone measurements in Korea, describe data acquisition and analysis systems, and briefly summarize the results from our ozone observations.

  • PDF

과학 1, 2호 로켓 실험을 통한 성층권 오존량 측정 (OZONE MEASUREMENTS IN THE STRATOSPHERE FROM KSR420S-1 AND -2)

  • 이기영;이동훈;김준;박창준;조희구
    • Journal of Astronomy and Space Sciences
    • /
    • 제11권1호
    • /
    • pp.53-70
    • /
    • 1994
  • 오존 측정기를 장착한 과학 1, 2호 로켓이 충청남도 안흥에서 1994년 6월 4일과 9월 1일에 각각 발사되었다. 오존 측정기로 성충권에서의 태양 자외선의 세기를 여러 파장대역에서 측정하여 성층권 고도의 오존 수밀도의 수직 분포를 구하였다. 오존 밀도의 최대값은 약 25km 근처에서 나타났으며, 오존 밀도의 분포는 중위도 지역에서의 기존 측정값들과 잘 일치하였다. 또한 위 로켓 실험 관측 자료를 동시 관측된 연세대의 돕슨 분광기, 경희대의 LIDAR, Nimbus 위성의 SBUV와 NOAA 위성의 TOVS 측정 자료들과 각각 비교하였다.

  • PDF

서울 상공의 최신 성층권 오전 변화 경향 (Updated Trends of Stratospheric Ozone over Seoul)

  • 김준;조회구;이윤곤;오성남;백선균
    • 대기
    • /
    • 제15권2호
    • /
    • pp.101-118
    • /
    • 2005
  • Atmospheric ozone changes temporally and spatially according to both anthropogenic and natural causes. It is essential to quantify the natural contributions to total ozone variations for the estimation of trend caused by anthropogenic processes. The aims of this study are to understand the intrinsic natural variability of long-term total ozone changes and to estimate more reliable ozone trend caused by anthropogenic ozone-depleting materials. For doing that, long-term time series for Seoul of monthly total ozone which were measured from both ground-based Dobson Spectrophotometer (Beck #124)(1985-2004) and satellite TOMS (1979-1984) are analyzed for selected period, after dividing the whole period (1979~2004) into two periods; the former period (1979~1991) and the latter period (1992~2004). In this study, ozone trends for the time series are calculated using multiple regression models with explanatory natural oscillations for the Arctic Oscillation(AO), North Atlantic Oscillation(NAO), North Pacific Oscillation(NPO), Pacific Decadal Oscillation(PDO), Quasi Biennial Oscillation(QBO), Southern Oscillation(SO), and Solar Cycle(SC) including tropopause pressure(TROPP). Using the developed models, more reliable anthropogenic ozone trend is estimated than previous studies that considered only QBO and SC as natural oscillations (eg; WMO, 1999). The quasi-anthropogenic ozone trend in Seoul is estimated to -0.12 %/decade during the whole period, -2.39 %/decade during the former period, and +0.10 %/decade during the latter period, respectively. Consequently, the net forcing mechanism of the natural oscillations on the ozone variability might be noticeably different in two time intervals with positive forcing for the former period (1979-1991) and negative forcing for the latter period (1992-2004). These results are also found to be consistent with those analyzed from the data observed at ground stations (Sapporo, Tateno) of Japan. In addition, the recent trend analyses for Seoul show positive change-in-trend estimates of +0.75 %/decade since 1997 relative to negative trend of -1.49 %/decade existing prior to 1997, showing -0.74 %/decade for the recent 8-year period since 1997. Also, additional supporting evidence for a slowdown in ozone depletion in the upper stratosphere has been obtained by Newchurch et al.(2003).