• Title/Summary/Keyword: DnaB

Search Result 2,731, Processing Time 0.029 seconds

Detection of Virulence-Associated Genes in Clinical Isolates of Bacillus anthracis by Multiplex PCR and DNA Probes

  • Kumar, Sanjay;Tuteja, Urmil
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.11
    • /
    • pp.1475-1481
    • /
    • 2009
  • Anthrax is a zoonotic disease caused by Bacillus anthracis, and well recognized as a potential agent for bioterrorism. B. anthracis can be identified by detecting the virulence factors genes located on two plasmids, pXO1 and pXO2. The aim of the present study was to determine the presence of virulence genes in 27 isolates of B. anthracis isolated from clinical and environmental samples. For this purpose, multiplex PCR and DNA probes were designed to detect protective antigen (pag), edema factor (cya), lethal factor (lef), and capsule (cap) genes. Our results indicated that all the isolates contained all the above virulence genes, suggesting that the isolates were virulent. To the best our knowledge, this is the first study about the determination of virulence marker genes in clinical and environmental isolates of B. anthracis using multiplex PCR and DNA probes in India. We suggest that the above methods can be useful in specific identification of virulent B. anthracis in clinical and environmental samples.

Cloning and Characterization of Directly Amplified Antiviral Gene Interferon Alpha-2b (HulFN$\{alpha}$-2b) from Human Leukocytes Chromosomal DNA

  • Behravan, Javad;Ahmadpour, Hassan
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.776-780
    • /
    • 2004
  • Interferons are cytokines that confer resistance to viral infection and inhibit cellular proliferation. The interferon alpha gene from human blood samples was amplified, cloned and expressed in E. coli (BL21). Leukocyte chromosomal DNA was used as a source of template DNA. Using specific primers, the gene for HulFN$\{alpha}$-2b was amplified and inserted into the E. coli vector, pET21b, by ligation of the HindIII and BamHI linkers of the vector and insert. The insert was further analyzed by PCR, DNA restriction mapping and sequencing, and expressed in a suitable E. coli strain. The production of this important cellular protein in the laboratory has significant applications in production of the recombinant pharmaceutical proteins.

Analysis of HBeAg and HBV DNA Detection in Hepatitis B Patients Treated with Antiviral Therapy (항 바이러스 치료중인 B형 간염환자에서 HBeAg 및 HBV DNA 검출에 관한 분석)

  • Cheon, Jun Hong;Chae, Hong Ju;Park, Mi Sun;Lim, Soo Yeon;Yoo, Seon Hee;Lee, Sun Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.35-39
    • /
    • 2019
  • Purpose Hepatitis B virus (hepatitis B virus, HBV) infection is a worldwide major public health problem and it is known as a major cause of chronic hepatitis, liver cirrhosis and liver cancer. And serologic tests of hepatitis B virus is essential for diagnosing and treating these diseases. In addition, with the development of molecular diagnostics, the detection of HBV DNA in serum diagnoses HBV infection and is recognized as an important indicator for the antiviral agent treatment response assessment. We performed HBeAg assay using Immunoradiometric assay (IRMA) and Chemiluminescent Microparticle Immunoassay (CMIA) in hepatitis B patients treated with antiviral agents. The detection rate of HBV DNA in serum was measured and compared by RT-PCR (Real Time - Polymerase Chain Reaction) method Materials and Methods HBeAg serum examination and HBV DNA quantification test were conducted on 270 hepatitis B patients undergoing anti-virus treatment after diagnosis of hepatitis B virus infection. Two serologic tests (IRMA, CMIA) with different detection principles were applied for the HBeAg serum test. Serum HBV DNA was quantitatively measured by real-time polymerase chain reaction (RT-PCR) using the Abbott m2000 System. Results The detection rate of HBeAg was 24.1% (65/270) for IRMA and 82.2% (222/270) for CMIA. Detection rate of serum HBV DNA by real-time RT-PCR is 29.3% (79/270). The measured amount of serum HBV DNA concentration is $4.8{\times}10^7{\pm}1.9{\times}10^8IU/mL$($mean{\pm}SD$). The minimum value is 16IU/mL, the maximum value is $1.0{\times}10^9IU/mL$, and the reference value for quantitative detection limit is 15IU/mL. The detection rates and concentrations of HBV DNA by group according to the results of HBeAg serological (IRMA, CMIA)tests were as follows. 1) Group I (IRMA negative, CMIA positive, N = 169), HBV DNA detection rate of 17.7% (30/169), $6.8{\times}10^5{\pm}1.9{\times}10^6IU/mL$ 2) Group II (IRMA positive, CMIA positive, N = 53), HBV DNA detection rate 62.3% (33/53), $1.1{\times}10^8{\pm}2.8{\times}10^8IU/mL$ 3) Group III (IRMA negative, CMIA negative, N = 36), HBV DNA detection rate 36.1% (13/36), $3.0{\times}10^5{\pm}1.1{\times}10^6IU/mL$ 4) Group IV(IRMA positive, CMIA negative, N = 12), HBV DNA detection rate 25% (3/12), $1.3{\times}10^3{\pm}1.1{\times}10^3IU/mL$ Conclusion HBeAg detection rate according to the serological test showed a large difference. This difference is considered for a number of reasons such as characteristics of the Ab used for assay kit and epitope, HBV of genotype. Detection rate and the concentration of the group-specific HBV DNA classified serologic results confirmed the high detection rate and the concentration in Group II (IRMA-positive, CMIA positive, N = 53).

Identification of Beauveria spp. Isolated from Mulberry Longicorn Beetle (Apriona germari Hope) using Polymerase Chain Reaction (뽕나무 하늘소(Apriona germari Hope)로부터 Beauveria속 사상균의 분리 및 PCR에 의한 동정)

  • 서종복;진병래
    • Journal of Sericultural and Entomological Science
    • /
    • v.37 no.2
    • /
    • pp.167-171
    • /
    • 1995
  • To develope a microbial pesticide for the control of mulberry longicorn beetle, Apriona germari, Beauveria spp. were isolated from the infected Apriona germari larvae. The morphology of Beauveria spp. was observed by phase contrast and scanning electron microscope. In addition, the Beauveria spp. isolated from Apriona germari were identified by the random amplification of polymorphic DNA using polymerase chain reaction. The results showed that the Beauveria spp., SFB-1A and SFB-3A, isolated from Apriona germari were identified with B. bassiana and B. brongniartii, respectively, suggesting that the random amplification of polymorphic DNA is effective for the identification of Beauveria spp.

  • PDF

Ethanol-induced Activiationof Transcription Factor NF-$\kappa$B and AP-1 in C6 Glial Cells

  • Park, Jae -Won;Shim, Young-Sup
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • In this study, the effectof ethanol and acetaldehyde on DNA binding activities of NF-$textsc{k}$B and AP-1 were evaluated in C6 rat glial cells. Both NF-$textsc{k}$B and AP-1 are important transcription factors for the expression of various cytokines in glial cells. Our data showed that neither ethanol nor acetaldehyde induced conspicuous cell death of C6 cells at clinically realistic concentrations. When the DNA binding activities of nuclear NF-$textsc{k}$B and AP-1 were estimated using electrophoretic mobility shift assay (EMSA), ethanol(0.3%) or acetaldehyde(1mM) induced transient activation of these transcription factors, which attained peak levels at 4~8 hours and declined to basal levels at 12 hours after treatement . The supershift analysis showed that the increased activities of NF-$textsc{k}$B in ethanol/acetaldehyde-treated C6 cells were due to the preferential induction of p65/p50 heterodimer complex. The DNA binding activities of these transcriptional factors decreased below basal levels when cells were cultured with either ethanol or acetaldehyde for 24 hours, and showed the inhibitory effect of chronic ehtanol /acetaldehyde treatment on the activities of these transsriptional factors. Our data indicate that either ethanol or acetaldehyde can induce functional changes of glial cells throught bi-directional modulation of NF-$textsc{k}$B and AP-1 DNA binding activities.

  • PDF

Genetic identification of Aeromonas species using a housekeeping gene, rpoD, in cultured salmonid fishes in Gangwon-Do (강원도 양식 연어과 어류에서 분리된 에로모나스 종의 유전학적 동정)

  • Lim, Jongwon;Koo, Bonhyeong;Kim, Kwang Il;Jeong, Hyun Do;Hong, Suhee
    • Journal of fish pathology
    • /
    • v.30 no.2
    • /
    • pp.79-88
    • /
    • 2017
  • At the present, fish farms are suffering a lot of economic losses due to infectious diseases caused by various pathogens including aeromonad. Aeromonad is ubiquitous bacteria that causes infectious diseases. At least 26 species in the genus Aeromonas have been reported to cause fatal infections not only in salmonid fishes, but also in other freshwater and seawater fishes. Molecular techniques based on nucleic acid sequences of 16S rDNA and housekeeping genes can be used to identify the Aeromonas species. In this study, The genus Aeromonas was isolated from salmonid fishes of sixteen fish farms in Gangwon-Do, Korea and phylogenetically identified based on the sequences of 16S rDNA and housekeeping genes for Aeromonad, i.e. RNA polymerase sigma factor ${\sigma}^{70}$ (rpoD) or DNA gyrase subunit B (gyrB). Consequently, 96 strains were collected from Atlantic salmon (Salmo salar), coho salmon (Oncorhynchus kisutch), masou salmon (Oncorhynchus masou) and rainbow trout (Oncorhynchus mykiss), and 36 isolates were identified as the genus Aeromonas by 16S rDNA analysis. Thirty six Aeromonad isolates were further analysed based on rpoD or gyrB gene sequences and found Aeromonas salmonicida (24 isolates), A. sobria (10 isolates), A. media (1 isolates) and A. popoffii (1 isolates), indicating that A. salmonicida is a main infectious bacteria in Salmonid fishes in Gangwon-Do. It was also proved that the phylogenetic identification of Aeromonas species based on the sequences of housekeeping gene is more precise than the 16S rDNA sequence.

Discrimination of Bacillus anthracis from Bacillus cereus Group Using KHT5 Marker (KHT5 마커를 사용한 Bacillus cereus 그룹에서 Bacillus anthracis의 구별)

  • 김형태;김성주;채영규
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.40-44
    • /
    • 2003
  • Bacillus anthracis is a gram-positive spore-forming bacterium that causes the disease anthrax. In order to develop a DNA marker specific for Bacillus anthracis and to discriminate this species from Bacillus cereus group, we applied the randomly amplified polymorphic DNA (RAPD)-PCR technique to a collection of 29 strains of the genus Bacillus, including 22 species of the B. cereus group. A 709-bp RAPD marker (KHT5) specific for B. anthracis was obtained from B. anthracis BAK. The PCR product of internal primer set from the KHT5 fragment distinguished B. anthracis from the other species of the B. cereus group.

DNA fingerprinting of Brucella abortus isolated from bovine brucellosis outbreaks by repetitive element sequence (rep)-PCR

  • Suh, Dong Kyun
    • Korean Journal of Veterinary Research
    • /
    • v.45 no.2
    • /
    • pp.199-205
    • /
    • 2005
  • DNA fingerprint patterns of 8 Brucella reference strains and 15 B. abortus field isolates were characterized by repetitive element sequence-based PCR (rep-PCR) using BOX- and ERIC-primers in this study. AMOS PCR differentiated all Brucella field isolates from B. abortus RB51, a vaccine strain by producing a B. abortus-specific 498 bp band. Rep-PCR using BOX-primer produced 13 to 18 bands with sizes of between 230 and 3,300 bp, and discriminated Brucella strains to the species level except B. canis and B. suis. PCR products amplified with ERIC primers were, however, not appropriate for differentiating the Brucella isolates. DNA fingerprint patterns for all B. abortus field isolates were identical among them and were put on one cluster with B. abortus biovar 1 reference strain in the dendrogram, indicating they were highly clonal. These results suggested that rep-PCR using BOX primer might to be a useful tool for calculating genetic relatedness among the Brucella species and for the study of brucellosis epidemiology.

Isolation and characterization of Phytochrome B gene in Poplar (포플러의 Phytochrome B 유전자 분리 및 특성구명)

  • Kang, Hoduck;Lee, Keum-Young;Kang, Sang-Gu;Bae, Han-hong
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.4 s.161
    • /
    • pp.236-242
    • /
    • 2005
  • Phytochrome B (PhyB) gene, which is a photoreceptor that controls plant growth under various light conditions, was cloned from Chinese hybrid poplar 'Soohang 1'. Nucleotide sequence and deduced amino acid sequences PhyB cDNA of 'Soohang' is consisted with 3,456 nucleotides and 1,156 amino acids. The cloned PhyB fragment showed 98% homology of amino acid sequences with Populus balsamifera PhyB1. According to Northern blot analysis. PhyB was up-regulated by light, while PhyB transcript was not detected under dark condition. According to this study, the cloned PhyB is induced by light and functions as photoreceptor.

Sensing Domain and Extension Rate of a Family B-Type DNA Polymerase Determine the Stalling at a Deaminated Base

  • Kim, Yun-Jae;Cha, Sun-Shin;Lee, Hyun-Sook;Ryu, Yong-Gu;Bae, Seung-Seob;Cho, Yo-Na;Cho, Hyun-Soo;Kim, Sang-Jin;Kwon, Suk-Tae;Lee, Jung-Hyun;Kang, Sung-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1377-1385
    • /
    • 2008
  • The uracil-sensing domain in archaeal family B-type DNA polymerases recognizes pro-mutagenic uracils in the DNA template, leading to stalling of DNA polymerases. Here, we describe our new findings regarding the molecular, mechanism underpinning the stalling of polymerases. We observed that two successive deaminated bases were required to stall TNA1 and KOD1 DNA polymerases, whereas a single deaminated base was enough for stalling Pfu DNA polymerase, in spite of the virtually identical uracil-sensing domains. TNA1 and KOD1 DNA polymerases have a much higher extension rate than Pfu DNA polymerase; decreasing the extension rate resulted in stalling by TNA1 and KOD1 DNA polymerases at a single deaminated base. These results strongly suggest that these polymerases require two factors to stop DNA polymerization at a single deaminated base: the presence of the uracil-sensing domain and a relatively slow extension rate.