• 제목/요약/키워드: Division Algorithm

검색결과 3,071건 처리시간 0.031초

이동형 차량용 무인사격시스템의 외란 제거 및 자세 제어 (Disturbance Rejection and Attitude Control of the Unmanned Firing System of the Mobile Vehicle)

  • 장유신;계중읍
    • 전자공학회논문지SC
    • /
    • 제44권3호
    • /
    • pp.64-69
    • /
    • 2007
  • 시스템의 자세 제어는 사용되는 모터의 위치 제어로 대응되며, 이러한 시스템은 운용환경 시에 충격 진동이 발생하게 된다. 이러한 충격 진동 외란을 제거해야 요구하는 위치 제어를 수행할 수 있다. 로봇 제어 분야에서 불확실한 외란에 의한 로봇의 자세 제어는 가장 기본적이면서 중요한 분야중의 하나이다. 이러한 문제를 다루기 위하여 계산 토크 방식에 기초한 선형 제어기법이나 적응 제어 기법, 강인 제어 기법 등을 이용한 연구 결과들이 발표되고 있다. 그러나 그러한 기법은 일반적으로 로봇의 정확한 동력학적 특성을 알아야 하며, 구현하기가 복잡하다. 따라서 본 논문에서는 적응 규칙에 의하여 모델의 불확실성, 시스템의 변화, 외란으로 인해 발생하는 공칭 플랜트와의 오차를 보상하도록 제어 입력을 생성하는 내부 루프 부분과 공칭 플랜트 모델의 명령을 추종하도록 하여 제어 입력을 생성하는 외부 루프 부분으로 구성되는 방법인 외란관측기(Disturbance OBserver : DOB) 제어 알고리즘을 제안한다. 또한 프로세서의 신뢰성과 수치 연산 및 알고리즘의 빠른 처리를 위해 현재 사용 빈도가 높은 TI사의 DSP시리즈 중에서 부동 소수점 연산 기능을 가지면서 모터 제어에 적합한 TMS320C2000계열의 TMS320F2812을 사용하여, 운용 시 발생되는 진동 등에 대한 외란 제거를 목적으로 한다. 본 논문은 규명된 시스템 모델식을 바탕으로 DOB 제어 시뮬레이션을 수행하고 시뮬레이션으로 검증된 DOB 모터 자세 제어 알고리즘을 DSP에 적용하기 위해 코드변환하고 PMSM 모터 모델 시뮬링크 블록을 구성하여 외란 관측기 제어 알고리즘을 모터 실험 시스템에 적용함으로써 타당성을 검증하고 상용 제어기로 실제 현장에 적용 가능함을 입증한다.

차세대 웹을 위한 SWRL 기반 역방향 추론엔진 SMART-B의 개발 (Development of an SWRL-based Backward Chaining Inference Engine SMART-B for the Next Generation Web)

  • 송용욱;홍준석;김우주;윤숙희;이성규
    • 지능정보연구
    • /
    • 제12권2호
    • /
    • pp.67-81
    • /
    • 2006
  • 현재의 웹이 HTML을 바탕으로 인간 사용자와의 인터페이스에 초점을 맞추고 있는데 비하여, 차세대 웹은 XML 및 XML 기반 각종 표준들을 바탕으로 소프트웨어 에이전트간의 상호작용에 초점을 맞추어 나가고 있다. 차세대 웹에서 소프트웨어 에이전트의 두뇌 역할을 수행하기 위하여 추론엔진은 차세대 웹의 표준 언어인 시맨틱 웹 - (Semantic Web)을 충실히 이해할 수 있어야 한다. 이를 위한 기초 작업의 일환으로 OWL(Web Ontology Language) 과 RuleML(Rule Markup Language)을 조합한 SWRL(Semantic Web Rule Language)이 W3C에 제안된 바 있다. 본 연구에서는 SWRL을 규칙 표현 방법으로 사용하고, OWL을 사실 표현 방법으로 사용하는 역방향 추론엔진인 SMART-B(SeMantic web Agent Reasoning Tools -Backward chaining inference engine)를 개발하고자 하였다. 이를 위하여 SWRL 기반 역방향 추론을 위한 요구 기능을 분석하고, 기존 역방향 추론 알고리즘에 차세대 시맨틱 웹의 요구 기능을 반영한 역방향 추론 알고리즘을 설계하였다. 또한, 유비쿼터스 환경에서의 각종 플랫폼간의 독립성과 이식성을 확보하고 기기간의 성능 차이를 극복할 수 있도록 사실 베이스 및 규칙 베이스의 관리도구와 역방향 추론 엔진 등을 Java 프로그래밍 언어를 이용하여 단위 컴포넌트의 형태로 개발하였다.

  • PDF

음향 임피던스 균질화를 이용한 거꿀시간 참반사보정 성능개선 (Improvement of Reverse-time Migration using Homogenization of Acoustic Impedance)

  • 이강훈;편석준;박윤희;정순홍
    • 지구물리와물리탐사
    • /
    • 제19권2호
    • /
    • pp.76-83
    • /
    • 2016
  • 탄성파 자료의 영상화 과정에서 입력자료인 속도 모델에 불연속면이 있는 경우 반사파에 의해 참반사보정(migration) 결과가 왜곡될 수 있다. 따라서 참반사보정을 위한 속도 모델은 지층 경계면에서 샘 파동장과 수신기 파동장을 구할 때 발생하는 반사파를 제거하기 위해 평활화(smoothing)하여 사용하는 것이 일반적이다. 그러나 속도 모델을 평활화할 경우 지층 경계면에서 속도 정보가 달라져 지하구조 영상이 왜곡될 가능성이 있다. 본 연구에서는 이러한 단점을 최소화하기 위해 속도가 불연속인 층간의 음향 임피던스를 일정하게 만들어 샘 파동장과 수신기 파동장을 구할 때 발생하는 반사파를 줄이고자 하였다. 음향 임피던스를 일정하게 만들기 위해 속도 차이를 보상하는 가상의 밀도(fake density)를 정의하고 참반사보정에 사용하였다. 음향 임피던스가 모든 층에서 일정할 때, 반사면에서 수직 입사파의 반사계수가 영이 되고 반사파가 최소화되어 참반사보정 결과를 향상시킬 수 있다. 이를 검증하기 위해 셀기반 유한차분법을 이용하여 거꿀시간 참반사보정(reverse-time migration) 알고리듬을 구현하였다. 수치예제를 통해 속도 대비가 큰 지층 경계면에서 참반사보정 영상의 품질이 향상되는 것을 확인할 수 있고, 특히 천부 지층에서 성능 개선효과가 큰 것을 관찰할 수 있다.

실시간 공중 자료획득 시스템을 위한 GPS/MEMS IMU 센서 검증 및 GPS/INS 통합 알고리즘 (GPS/INS Integration and Preliminary Test of GPS/MEMS IMU for Real-time Aerial Monitoring System)

  • 이원진;권재현;이종기;한중희
    • 한국측량학회지
    • /
    • 제27권2호
    • /
    • pp.225-234
    • /
    • 2009
  • 실시간 공중 자료획득 시스템은 긴급상황에서 DEM, 정사영상과 같은 공간정보를 실시간으로 생성하기 위해 빠른 자료 수집을 수행하는 시스템이다. 이러한 시스템에서 GPS와 INS는 플랫폼의 위치와 자세정보를 획득 하는데 중요한 역할을 한다. 그러므로 이번 연구에서는 실시간 공중 자료획득 시스템에 장착될 GPS/MEMS IMU 센서의 성능을 평가하였다. 그리고 시뮬레이션 데이터를 통하여 실시간 자료 수집에 더욱 적절한 GPS/INS 통합 알고리즘을 확인하였다. 정지 상태와 이동 상태에서의 GPS/MEMS IMU 센서 성능 평가 결과 각각 3$\sim$4m, 2$\sim$3m의 위치오차를 확인하였다. 또한 자기장 센서를 사용하는 Aerospace 모드에서 더 높은 정밀도의 자세 결과를 확인하였다. EKF와 UKF의 비교에서는 직선 뿐만 아니라 곡선에서도 많은 차이를 보이지 않았다. 하지만 계산 시간에서 EKF가 UKF에 비하여 약 25배 빠르므로 실시간 공중 자료획득 시스템의 GPS/INS 통합 알고리즘에는 EKF가 더욱 적합한 것으로 판단된다.

ART2 알고리즘과 얼굴 인증을 이용한 여권 인식 (Passports Recognition using ART2 Algorithm and Face Verification)

  • 장도원;김광백
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.190-197
    • /
    • 2005
  • 본 논문에서는 출입국자 관리의 효율성과 체계적인 출입국 관리를 위하여 여권 코드를 자동으로 인식하고 위조 여권을 판별할 수 있는 여권 인식 및 얼굴 인증 방법을 제안한다. 여권 이미지는 기울어진 상태로 스캔되어 획득되어질 수도 있으므로 기울기 보정은 문자 분할 및 인식, 얼굴 인증에 있어 매우 중요하다. 따라서 본 논문에서는 여권 영상을 스미어링한 후, 추출된 문자열 중에서 가장 긴 문자열을 선택하고 이 문자열의 좌측과 우측 부분의 두께 중심을 연결하는 직선과 수평선과의 기울기를 이용하여 여권 여상에 대한 각도 보정을 수행한다. 여권 코드 추출은 소벨 연산자와 수평 스미어링, 8방향 윤곽선 추적 알고리즘을 적용하여 여권 코드의 문자열 영역을 추출하고, 추출된 여권 코드 문자열 영역에 대해 반복 이지화 방법을 적용하여 코드의 문자열 영역을 이진화한다. 이진화된 문자열 영역에 대해 CDM 마스크를 적용하여 문자열의 코드들을 복원하고 8방향 윤곽선 추적 알고리즘을 적용하여 개별 코드를 추출한다. 추출된 개별 코드는 ART2 알고리즘을 적용하여 인식한다. 얼굴 인증을 위해 템플릿 매칭 알고리즘을 이용하여 얼굴 템플릿 데이터베이스를 구축하고 여권에서 추출된 얼굴 영역과의 유사도 측정을 통하여 여권 얼굴 영역의 위조 여부를 판별한다. 얼굴 인증을 위해서 Hue, YIQ-I, YCbCr-Cb 특징들의 유사도를 종합적으로 분석하여 얼굴 인증에 적용한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에 얼굴 부분을 위조한 여권과 노이즈, 대비 증가 및 감소, 밝기 증가 및 감소 및 여권 영상을 흐리게 하여 실험한 결과, 제안된 방법이 여권 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.권 영상에서 획득되어진 얼굴 영상의 특징벡터와 데이터베이스에 있는 얼굴 영상의 특징벡터와의 거리 값을 계산하여 사진 위조 여부를 판별한다. 제안된 여권 인식 및 얼굴 인증 방법의 성능을 평가를 위하여 원본 여권에서 얼굴 부분을 위조한 여권과 기울어진 여권 영상을 대상으로 실험한 결과, 제안된 방법이 여권의 코드 인식 및 얼굴 인증에 있어서 우수한 성능이 있음을 확인하였다.진행하고 있다.태도와 유아의 창의성간에는 상관이 없는 것으로 나타났고, 일반 유아의 아버지 양육태도와 유아의 창의성간의 상관에서는 아버지 양육태도의 성취-비성취 요인에서와 창의성제목의 추상성요인에서 상관이 있는 것으로 나타났다. 따라서 창의성이 높은 아동의 아버지의 양육태도는 일반 유아의 아버지와 보다 더 애정적이며 자율성이 높지만 창의성이 높은 아동의 집단내에서 창의성에 특별한 영향을 더 미치는 아버지의 양육방식은 발견되지 않았다. 반면 일반 유아의 경우 아버지의 성취지향성이 낮을 때 자녀의 창의성을 향상시킬 수 있는 것으로 나타났다. 이상에서 자녀의 창의성을 향상시키는 중요한 양육차원은 애정성이나 비성취지향성으로 나타나고 있어 정서적인 측면의 지원인 것으로 밝혀졌다.징에서 나타나는 AD-SR맥락의 반성적 탐구가 자주 나타났다. 반성적 탐구 척도 두 그룹을 비교 했을 때 CON 상호작용의 특징이 낮게 나타나는 N그룹이 양적으로 그리고 내용적으로 더 의미 있는 반성적 탐구를 했다용을 지원하는 홈페이지를 만들어 자료 제공 사이트에 대한 메타 자료를 데이터베이스화했으며 이를 통해 학생들이 원하는 실시간 자료를 검색하여 찾을 수 있고 홈페이지를 방분했을 때 이해하기 어려운 그래프나 각 홈페이지가 제공하는 자료들에 대한 처리 방법을 도움말로 제공받을 수 있게 했다. 실

  • PDF

내용 기반 이미지 검색을 위한 개선된 SIM 방법 (Improved SIM Algorithm for Contents-based Image Retrieval)

  • 김광백
    • 지능정보연구
    • /
    • 제15권2호
    • /
    • pp.49-59
    • /
    • 2009
  • 내용기반 이미지 검색은 색상, 질감 등의 이미지 자체의 자질들을 이용하여 검색하므로 텍스트 기반 이미지 검색의 객관성 부족과 모든 이미지에 사람이 주석을 달아야 하는 단점을 보완할 수 있는 이미지 검색 방법이다. 이러한 내용 기반 이미지 검색에서 사용되는 방식 중 SIM(Self-organizing Image browsing Map) 방식은 SOM 알고리즘을 이용하여 이미지들을 브라우징 가능한 그룹으로 맵핑하고 그 결과를 바탕으로 이미지를 검색하게 된다. 하지만 비슷한 이미지라 할지라도 이미지의 밝기, 피사체의 움직임 등에 의하여 색상 정보가 다르게 나타나게 되면 SOM 알고리즘의 학습 과정에서 유사한 이미지들을 그룹화한 노드를 BMU로 선택하지 못하고 떨어져 있는 다른 노드를 선택하게 된다. 이 경우 학습이 진행되면서 유사한 이미지들이 군집하는 과정을 거치지만 학습이 완료될 때까지 다른 유사 이미지들을 그룹화한 노드에 맵핑이 되지 못하는 경우가 발생한다. 그 결과, 검색 결과에 나타나지 못하여 적합 이미지 검색률이 낮아 질 수 있다. 따라서 본 논문에서는 HSV 색상모델을 이용하여 양자화하고 이미지의 색상 특징 벡터를 추출한 뒤 SOM 알고리즘을 이용하여 이미지들을 브라우징 가능한 그룹으로 맵핑한다. 이때 SIM 방식의 문제점인 유사 이미지가 따로 맵핑되어 적합 이미지 검색률이 낮아지는 것을 줄이기 위하여 SOM을 두 개의 층으로 구성한다. 첫 번째 층에서 이미지의 색상 자질을 이용하여 학습을 완료한 후, 학습이 완료된 첫 번째 층 맵의 각 노드들의 연결 가중치를 이용하여 두 번째 층에서 다시 한번 학습을 수행한다. 두 개의 층으로 학습이 완료된 두 번째 층의 SOM에 질의 이미지의 특징 벡터를 입력하여 BMU를 선택하고 BMU와 연결된 첫 번째 층의 노드를 최종 선택하여 이미지를 검색한다. 실험결과, 제안된 이미지 검색 방법이 기존의 이미지 검색 방법 보다 적합 이미지의 검색 성공률이 높은 것을 확인 할 수 있었다.

  • PDF

기후변화를 고려한 일강우량의 지역빈도해석 (Regional Frequency Analysis for Rainfall Under Climate Change)

  • 송창우;김연수;강나래;이동률;김형수
    • 한국습지학회지
    • /
    • 제15권1호
    • /
    • pp.125-137
    • /
    • 2013
  • 기후변화에 따른 기상변화로 인하여 집중호우 및 돌발홍수 등의 빈도가 증가하고 있다. IPCC 4차 보고서(2007)는 21세기 후반까지 온도상승으로 인한 폭우 및 태풍이 점차 강력해질 것이라는 예측을 하고 있다. 영국에서 발간한 Flood Estimation Handbook(Institute of Hydrology, 1999)에 의하면 대상자료의 기간이 구하려는 재현기간보다 작은 경우에는 지점빈도해석은 적절하지 않으므로, 지역빈도해석을 추천하고 있다. 이에 본 논문은 기후변화를 고려한 빈도해석을 수행하였으며, 이에 앞서 세계기상기구에서 제시한 기후지수를 이용하여 기후변화를 평가하고, 기상청 지역기후모델(KMA-RegCM3)의 강우 자료를 이용하여 기상청 산하 58개 관측소에 대하여 지역빈도해석을 실시하였다. Hosking와 wallis(1993)이 제안한 L-moment 알고리즘을 이용하여 지역빈도해석을 수행하였으며, 그 결과 일부지역을 제외한 대부분의 지역에서 강수량이 증가하였으며, 현재 기간 대비 7~10%의 증가율을 나타내었다. 미래 기후변화의 영향으로 중 남부지방은 상대적으로 강우량이 증가할 것으로 보이며, 미래 강우량에 따른 설계빈도를 재설정 및 강수량이 증가하는 지역에 대한 확률수문량의 적용이 필요할 것으로 판단된다.

컨테이너 크레인을 위한 모델기반 퍼지제어기 설계 (Design of a Model-Based Fuzzy Controller for Container Cranes)

  • 이수룡;이윤형;안종갑;손정기;최재준;소명옥
    • 한국항해항만학회지
    • /
    • 제32권6호
    • /
    • pp.459-464
    • /
    • 2008
  • 본 논문은 파라미터 변화나 외란이 존재하는 환경에서 컨테이너 크레인의 트롤리 위치와 컨테이너의 흔들림을 효과적으로 제어할 수 있는 모델기반 퍼지제어기를 제안한다. 이를 위해 우선 파라미터 변화에 대응할 수 있는 모델링 기법인 T-S 퍼지모델을 구현하고, 소속함수의 파라미터를 실수코딩 유전알고리즘(RCGA)으로 조정하는 문제를 다룬다. 다음으로 퍼지모델의 각 서브시스템에 대해 LQ 제어기 법을 사용하여 서브제어기를 설계하고, 이렇게 설계된 서브제어기를 ROGA로 조정된 퍼지모델의 소속함수로 퍼지결합하여 제안하는 모델기반 퍼지제어기를 구성한다. 시뮬레이션을 통해 RCGA로 조정된 소속함수를 사용하는 퍼지모델은 컨테이너 크레인의 비선형 모델의 출력에 잘 추종하였고, 모델기반 퍼지제어기도 파라미터 변화와 외란이 존재하는 환경에서 강인한 제어를 수행하고 있음을 확인하였다.

항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터 구축 및 알고리즘 적용 연구 (A Study of Establishment and application Algorithm of Artificial Intelligence Training Data on Land use/cover Using Aerial Photograph and Satellite Images)

  • 이성혁;이명진
    • 대한원격탐사학회지
    • /
    • 제37권5_1호
    • /
    • pp.871-884
    • /
    • 2021
  • 본 연구의 목적은 항공 및 위성영상을 활용한 토지피복 관련 인공지능 학습 데이터를 구축, 검증 및 알고리즘 적용의 효율화 방안을 연구하였다. 이를 위하여 토지피복 8개 항목에 대하여 고해상도의 항공영상 및 Sentinel-2 인공위성에서 얻은 이미지를 사용하여 0.51 m 및 10 m Multi-resolution 데이터셋을 구축하였다. 또한, 학습 데이터의 구성은 Fine data (총 17,000개) 와 Coarse data (총 33,000개)를 동시 구축 및 정밀한 변화 탐지 및 대규모 학습 데이터셋 구축이라는 2가지 목적을 달성하였다. 학습 데이터의 정확도를 위한 검수는 정제 데이터, 어노테이션 및 샘플링으로 3단계로 진행하였다. 최종적으로 검수가 완료된 학습데이터를 Semantic Segmentation 알고리즘 중 U-Net, DeeplabV3+에 적용하여, 결과를 분석하였다. 분석결과 항공영상 기반의 토지피복 평균 정확도는 U- Net 77.8%, Deeplab V3+ 76.3% 및 위성영상 기반의 토지피복에 대한 평균 정확도는 U-Net 91.4%, Deeplab V3+ 85.8%이다. 본 연구를 통하여 구축된 고해상도 항공영상 및 위성영상을 이용한 토지피복 인공지능 학습 데이터셋은 토지피복 변화 및 분류에 도움이 되는 참조자료로 활용이 가능하다. 향후 우리나라 전체를 대상으로 인공지능 학습 데이터셋 구축 시, 토지피복을 연구하는 다양한 인공지능 분야에 활용될 것으로 기대된다.

시각 장애인 가상현실 체험 환경을 위한 딥러닝을 활용한 몰입형 보행 상호작용 설계 (Design of Immersive Walking Interaction Using Deep Learning for Virtual Reality Experience Environment of Visually Impaired People)

  • 오지석;봉찬균;김진모
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제25권3호
    • /
    • pp.11-20
    • /
    • 2019
  • 본 연구는 시각 장애인의 도보 적응을 위한 새로운 가상현실 체험 환경을 제안한다. 제안하는 가상현실 체험 환경의 핵심은 몰입형 보행 상호작용과 딥러닝 기반 점자 블록 인식으로 구성된다. 우선, 시각 장애인의 입장에서 현실적인 걷기 경험을 제공함을 목적으로 제자리 걸음을 감지하여 걷기를 판단하는 트래커 기반 걷기 처리과정과 시각 장애인의 보행 보조 도구를 가상현실에 적용한 컨트롤러 기반 VR 흰지팡이를 설계한다. 또한, VR 흰지팡이를 활용한 길 안내 과정에서 도로 위의 점자 블록 인지 및 반응 등 종합적인 의사결정을 수행하는 학습 모델을 제안한다. 이를 기반으로 가상현실 도보 체험 환경에 대한 실험을 위하여 실외 도시 환경으로 구성된 가상현실 어플리케이션을 제작하고, 참가자를 대상으로 설문 실험 및 성능 분석을 진행하였다. 결과적으로 제안한 가상현실 체험 환경이 시각 장애인의 입장에서 현존감 높은 도보 체험을 제공하고 있음을 확인하였다. 그리고 제안한 학습과 처리과정이 인도와 차도, 인도 위의 점자 블록을 높은 정확도로 인지함을 확인하였다.