• Title/Summary/Keyword: Diversity coding (DC)

Search Result 3, Processing Time 0.018 seconds

Improving the Performance of OFDM-Based Vehicular Systems through Diversity Coding

  • Arrobo, Gabriel E.;Gitlin, Richard D.
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.132-141
    • /
    • 2013
  • In this paper, we present diversity coded orthogonal frequency division multiplexing (DC-OFDM), an approach to maximize the probability of successful reception and increase the reliability of OFDM-based systems through diversity coding. We focus on the application of DC-OFDM to vehicular networks based on IEEE 802.11p technology and analyze the performance improvement using this new technology. It is shown that DC-OFDM significantly improves the performance of vehicular ad hoc networks in terms of throughput and the expected number of correctly received symbols.

Design of PI Controller for DC ServoMotor Speed Control Using Genetic Algorithm (유전알고리즘을 이용한 직류 서보 모터 속도제어용 PI제어기의 설계)

  • Park, Han-Suk;Park, Hyun-Ju;Him, Dong-Wan;Hwang, Gi-Hyun;Woo, Jung-In
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2111-2113
    • /
    • 2002
  • This paper proposes the design of PI controller using real-coding genetic algorithm showing a good performance on convergence velocity and diversity of population among evolutionary computations. To evaluate the proposed method's effectiveness, we apply the proposed GA-PI controller to the speed control of an actual DC servomotor system. The experimental results show that GA-PI controller has the better control performance than PI controller in terms of settling time rising time and overshoot.

  • PDF

ISOLATION AND IDENTIFICATION OF BACTERIA FROM THE ROOT CANAL OF THE TEETH DIAGNOSED AS THE ACUTE PULPITIS AND ACUTE PERIAPICAL ABSCESS (급성 치수염 및 급성 치근단 농양의 치근관으로부터의 세균 분리 및 동정)

  • Lee, Yeon-Jae;Kim, Mi-Kwang;Hwang, Ho-Keel;Kook, Joong-Ki
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.5
    • /
    • pp.409-422
    • /
    • 2005
  • The aim of this study was to identify the bacteria isolated from acute endodontic lesions by cell culture and 16S rDNA sequencing. The necrotic pulpal tissue was collected from 17 infected root canals, which were diagnosed as being either an acute pulpitis or acute periapical abscess. Samples were collected aseptically from the infected pulpal tissue of the infected root canals using a barbed broach and a paper point. The cut barbed broaches and paper points were transferred to an eppendorf tube containing 500 ul of 1 XPBS. The sample solution was briefly mixed and plated onto a BHI-agar plate containing $5\%$ sheep blood. The agar plates were incubated in a $37^{\circ}C$ anaerobic chamber for 7 days. The bacteria growing on the agar plate were identified by 16S rRNA coding gene (rDNA) cloning and sequencing at the species level. Among the 71 colonies grown on the agar plates, 56 strains survived and were identified. In dental caries involving the root canals, Streptococcus spp. were mainly isolated. Actinomyces, Clostridia, Bacteroides and Fusobacteria were isolated in the periapical lesion without dental caries. Interestingly, two new Actinomyces spp. (ChDC B639 and ChDC B631) were isolated in this study. These results showed that there was diversity among the species in endodontic lesions, This suggests that an endodontic infection is a mixed infection with a polymicrobial etiology. These results may offer the bacterial strains for pathogenesis studies related to an endodontic infection.