• 제목/요약/키워드: Diversion dam

검색결과 37건 처리시간 0.026초

금강-보령댐 도수터널 운영에 따른 금강 본류 내 수위 영향 분석 연구 (Impacts on Water Surface Level of the Geum River with the Diversion Tunnel Operation for Low Flow Augmentation of the Boryong Dam)

  • 장석환;오경두;오지환
    • 한국환경과학회지
    • /
    • 제26권9호
    • /
    • pp.1031-1043
    • /
    • 2017
  • Recently severe drought caused the water shortage around the western parts of Chungcheongnamdo province, South Korea. A Diversion tunnel from the Geum river to the Boryong dam, which is the water supply dam for these areas has been proposed to solve this problem. This study examined hydraulic impacts on the Geum river associated with the diversion plan assuming the severe drought condition of 2015 would persist for the simulation period of 2016. The hydraulic simulation model was verified using hydrologic and hydraulic data including hourly discharges of the Geum river and its 8 tributaries, fluctuation of tidal level at the mouth of the river, withdrawals and return flows and operation records of the Geum river barrage since Feb. 1, 2015 through May 31, 2015. For the upstream boundary condition of the Geum river predicted inflow series using the nonlinear regression equation for 2015 discharge data was used. In order to estimate the effects of uncertainty in inflow prediction to the results total four inflow series consisting of upper limit flow, expected flow, lower limit flow and instream flow were used to examine hydraulic impacts of the diversion plan. The simulation showed that in cases of upper limit and expected flows there would be no problem in taking water from the Geum river mouth with a minimum water surface level of EL(+) 1.44 m. Meanwhile, the simulation also showed that in cases of lower limit flow and instream flow there would be some problems not only in taking water for water supply from the mouth of the Geum river but also operating the diversion facility itself with minimum water surface levels of EL(+) 0.94, 0.72, 0.43, and 0.14 m for the lower limit flow without/with diversion and the instream flow without/with diversion, respectively.

SWAT 모형을 이용한 보령댐 도수로 운영 방안 및 정책 연구 (A Study on the Optimal Operation and Policy of the Boryeong Dam Diverion Pipe Line Using the SWAT Model)

  • 박범수;윤효직;홍용석;김성표
    • 한국물환경학회지
    • /
    • 제36권6호
    • /
    • pp.546-558
    • /
    • 2020
  • While industrialization has provided in abundance, the pollution it creates has caused untold damage to the environment, increasing the frequency and severity of natural disasters through changes in global climate patterns. The World Risk Forum's (WEF) World Risk Report presented the results of a survey of experts from around the world detailing the most influential risk factors over the next decade. Notably, the failure to respond to climate change ranked first and the global water crisis third. The extreme drought in the western Chungnam province was unexpected in 2016. At the time, the water level of Boryeong Dam was drastically decreased due to receiving less than half the average recorded rainfall in the region that year. The Boryeong Dam diversion pipeline has the capacity to solve the water shortage problem between these two regions by providing water from Geumgang to the western part of Chungnam, including Boryeong City. Current weather trends suggest drought is likely to continue in western Chungnam, which uses the Boryeong Dam as an intake source. This makes it necessary to operate Boryeong Dam diversion pipeline in an efficient and effective manner. SWAT is a watershed scale model developed to predict the impact of land management practices on water. The SWAT model was used in this study to evaluate the adequacy of the Boryeong Dam diversion pipeline operational plan by comparing it to present Boryeong Dam diversion pipeline operation. By investigating the number of days required to reach each reservoir stage, we determined that the number of days required to reach the boundary stage was less than that of the current operation. This determination accounts for the caveats that the Boryeong Dam waterway was not operated and only one pump will be operated from October to May of next year. As our results suggest, the most stable operation scenario is to operate two pumps at all times. This can be accomplished by operating two pumps from the caution stage to increase the number of pumps whenever the stage is raised. In addition to the stable operation of the Boryeong Dam pipeline, policy considerations are required with regard to imposing a water use charge on users of the Boryeong Dam region.

Performance Prediction of Tunnel-Type Small Hydro Power Plants with Diversion Dam

  • Lee, Chul-Hyung;Park, Wan-Soon
    • 태양에너지
    • /
    • 제20권2호
    • /
    • pp.67-73
    • /
    • 2000
  • This study represents the methodology of performance prediction for small hydro power(SHP) sites. Nine tunnel type SHP sites with diversion dam were selected and the performance characteristics were analyzed by using a developed model. Also, primary design specifications such as design flowrate, plant capacity, and operational rate were suggested and feasibility for tunnel-type SHP sites were estimated. It was found that the design flowrate was most important parameter to exploit SHP plant and the methodology developed in this study was useful tool to analyze the performance of SHP sites.

  • PDF

SHIHMEN SEDIMENT PREVENTION DIVERSION TUNNEL PLANNING AND DESIGN

  • Ho-Shong Hou;Ming-Shun Lee;Percy Hou
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.168-172
    • /
    • 2009
  • Shihmen reservoir was started in May 1963. The main purposes of Shihmen reservoir are for agriculture, power supply, flood control and tourism. Shihme Asn dam is an earth dam. Its crown height is 133m above mean sea level, with length 360 m, watershed 763.4 km2, and maximum volume 309 million cms. Turbidity in Shihmen dam was severely affected by typhoons Aere (2004) and Masa (2005). Increased deposition after Aere was 28 million cms. Turbidity at Shihmen Canal Inlet is 3000 NTU (Nephelometry Turbidity Unit). Sediment sluicing strategies for downstream channel are demanded. Therefore, diversionary sediment preventing channel is planned in the upstream of Shihmen reservoir. Finally, turbid flow in tunnel channel is bypassed and diverted its flow down to downstream.

  • PDF

광학위성을 활용한 임진강 접경지역 황강댐 저수지의 월단위 물수지 분석 (Monthly Water Balance Analysis of Hwanggang Dam Reservoir for Imjin river in Border Area using Optical Satellite)

  • 김진겸;강부식;유완식;황의호
    • 한국지리정보학회지
    • /
    • 제24권4호
    • /
    • pp.194-208
    • /
    • 2021
  • 임진강 상류 북한지역에 위치한 황강댐은 약 3억 5천만m3 규모의 저수지를 가지고 있으며, 하류로의 발전방류 이후 방류량 일부를 도수하여 예성강 유역의 생활, 공업, 농업용수를 공급하고 있는 것으로 알려져 있다. 이와 같은 황강댐의 유역변경식 용수공급으로 인해 임진강 하류로 흘러내려 오는 유량이 감소하여 우리나라의 용수공급, 하천유지유량, 수질 및 생태환경에 부정적인 영향을 미치고 있다. 하지만 남북접경지역의 특성상 수문자료의 공유가 원활하지 못하고 황강댐의 운영방식을 알 수가 없으므로 하류부 남한측 지역의 피해위험이 상존하고 있다. 이에 본 연구에서는 광학 원격탐사 영상을 기반으로 보정된 수문모형과 물수지 분석을 통해 장기유출 개념의 월별 도 수량을 산정하였다. 2019년 1월부터 2021년 9월까지의 물수지 분석결과 황강댐의 평균 도수량은 29.2m3/s로서 이는 연간 9.22억 톤에 해당하는 수자원 양이며, 황강댐에 유입되는 연평균 유입량인 20.2억 톤 중 45.6%를 차지한다.

복통을 갖는 저수지의 결함 조사 및 보수보강 방안 (Methodologies for Survey and Retrofit of Small Dams Pierced by Diversion Tunnel)

  • 장봉석;임은상;오병현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제12권2호
    • /
    • pp.75-82
    • /
    • 2008
  • 국내에는 약 18,000여개의 댐이 있는 것으로 보고되고 있다. 이 중에서 대댐으로 분류되는 1,200여개의 대댐은 비교적 양호하게 운영 관리되고 있으나, 지자체 등에서 관리하는 소규모의 댐들은 대부분 제체를 관통하는 복통을 갖고 있으며, 제도적 장치의 미비와 전문 인력의 부족으로 체계적인 유지관리가 거의 이루어지지 않고 있는 실정이다. 본 연구에서는 소규모 댐들에서 자주 발생하는 결함의 유형에 대해서 고찰하고, 결함의 보수보강을 통하여 소규모 댐의 안전을 확보할 수 있는 방법을 제시하고자 한다. 또한, 전기비저항 탐사를 통하여 결함의 진행정도를 파악하고, 보수보강 이후의 보수보강 효과를 판정하는 방법론을 제시하고자 하였다.

홍수시 월류를 고려한 콘크리트 가물막이댐의 파괴확률 산정 (Failure Probability Analysis of Concrete Cofferdam Considering the Overflow in Flood Season)

  • 홍원표;송창근
    • 한국안전학회지
    • /
    • 제35권5호
    • /
    • pp.30-38
    • /
    • 2020
  • In order to construct a dam, the diversion facility such as cofferdam and a diversion tunnel should be installed in advance. And size of a cofferdam depends on type of a main dam. According to the Korea Dam Design Standard, if the main dam is a concrete dam, design flood of the cofferdam is 1~2 years flood frequency. This means that overflow of the cofferdam occurs one time for 1 or 2 years, therefore, stability of the cofferdam should be secured against any overflow problem. In this study, failure probability analysis for the concrete cofferdam is performed considering the overflow. First of all, limit state function of the concrete cofferdam is defined for overturning, sliding and base pressure, and upstream water levels are set as El. 501 m, El. 503 m, El. 505 m, El. 507 m. Also, after literature investigation research, probabilistic characteristics of various random variables are determined, the failure probability of the concrete cofferdam is calculated using the Monte Carlo Simulation. As a result of the analysis, when the upstream water level rises, it means overflow, the failure probability increases rapidly. In particular, the failure probability is largest in case of flood loading condition. It is considered that the high upstream water level causes increase of the upstream water pressure and the uplift pressure on the foundation. In addition, among the overturning, the sliding and the base pressure, the overturing is the major cause for the cofferdam failure considering the overflow.

필 댐의 특성을 고려한 농업용 저수지 정밀안전진단체계 개선 연구 (A Study on the Safety Inspection System Improvement of Agricultural Reservoir Considering Fill-Dam Characteristics)

  • 이창범;정남수;박승기;전상옥
    • 한국농공학회논문집
    • /
    • 제58권4호
    • /
    • pp.1-8
    • /
    • 2016
  • In 2008, 17, 596 dams and reservoirs are scattered across South Korea, and 17, 505 of them (99.5 %) are used for agriculture and 99.3 % are fill dam types. This study aimed to review literature related to the precise safety diagnosis system for agricultural reservoirs established by Korea Rural Community Corporation (KRCC) and analyze problems of its evaluation method. And then, it proposed ways to improve the system including a modified diagnosis system, which was applied to pilot districts in order to verify the utility. For assessment model development of agricultural reservoir, we reviewed status of precision safety inspections systems of agricultural reservoir. There are many problems such as assess agricultural reservoir not by sheet which used in fill dam but by block which used in concrete dam construction and diversion tunnel which main element in reservoir levee is treated as water intake facility. For considering diversion tunnel in reservoir levee, previous precision safety inspection systems which summed in separated phenomenon, separated element, separated site, separated facility was change to new systems which summed in site, phenomenon, element, and facility. Compared results of previous inspection system calculated total assessment index (Ec) with new system calculated total assessment index (Ec) are not show statistical difference.

Soft Sedimentary Rock Slopes Design of Diversion Tunnel

  • Jee, Warren Wangryul
    • 한국암반공학회:학술대회논문집
    • /
    • 한국암반공학회 2007년도 특별심포지엄 논문집
    • /
    • pp.63-79
    • /
    • 2007
  • Several remedial works were attempted to stabilize the collapsed area of the inlet slopes of diversion tunnel, but prevention of any further movement was being only carried out at beginning stage by filling the area with aggregates and rock debris, after several cracks had been initiated and developed around the area. The extra specialty developed folding zone is consisted with highly weathered Greywacke and Black shale. The suggested solution is to improve the properties of the rock mass of failed area by choosing the optimum level of reinforcement through the increment of slope rock support design so as to control the movement of slopes during the re-excavation. The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia. The power station will consist of a 210m height Concrete Faced Rockfill Dam. During the construction of the dam and the power facilities the Balui River has to be diverted of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four defined Rock Mass Type (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each "global" slope without any rock support and shotcrete system. In the second stage, it is calculated for each "local" slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF

바쿤 가배수로 터널의 최적지보설계 (Rock Support Design of Bakun Tunnelling Project in Sarawak, Malaysia)

  • 지왕률
    • 터널과지하공간
    • /
    • 제8권4호
    • /
    • pp.296-306
    • /
    • 1998
  • 바쿤 수력발전 공사계획은 대형댐과 2,520 MW 출력량의 수력발전소를 건설하는 대형 턴키 프로젝트이며 현재는 발전댐 건설에 앞서 3개의 가베수 터널이 시공중에 있다. 바쿤 지역은 유기물 함량이 높아 쉽게 부서지는 퇴적지층으로 이러한 열대우림지역에서 가배수로 터널의 지보설계를 위해 전체적인 암층단위를 공학적인 목적과 역학적 거동양상을 토대로 주도적인 암종에 따라 분류하였다. 또한 이러한 암층단위를 기준으로 풍화정도와 절리의 빈도 및 특성을 고려하여 다시 4개의 암반유형으로 분류하였고 또한 가배수로 터널의 특성과 현재의 지반특성과 현재의 지반특성을 고려하여 지반내 swelling 광물의 존재를 확인하였다. 다양한 암반과 지보조건에 적합한 다양한 Swellex 록볼트를 적용하였으며 지지력이 낮은 록볼트를 사용할 대 발생되는 문제는 볼트의 면적에 따른 록볼트의 양을 조절하여 해결하였다. 또한 계측결과와 전산해석 결과에 따라 지보재의 설치간격, 수량을 조절하였으며, 계측결과에 따른 역해석을 실시하여 최적의 지보패턴을 결정하였다.

  • PDF