• 제목/요약/키워드: Dittus-Boelter

검색결과 13건 처리시간 0.025초

원형이중관내의 난류유동의 열전달 특성에 관한 실험적 연구 (An Experimental Study on Heat Transfer Characteristics with Turbulent Flow in a Cylindrical Annuli)

  • 장태현;이권수
    • 한국산업융합학회 논문집
    • /
    • 제5권3호
    • /
    • pp.193-200
    • /
    • 2002
  • An experimental study was performed to study heat transfer characteristics for turbulent flow in an axisymmetric annuli. The air flow temperature and the local Nusselt number in turbulent flow were measured or calculated for Re=30,000, 40,000, 50,000, 60,000, 70,000 and 80,000. The local Nusselts number were compared to that obtained from Dittus-Boelter equation with turbulent flow. The results show that the flow enhances the heat transfer in the initial and exit portion of the test tube.

  • PDF

An Experimental Study on Heat Transfer Characteristics with Turbulent Swirling Flow Using Uniform Heat Flux in a Cylindrical Annuli

  • Chang, Tae-Hyun;Lee, Kwon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.2042-2052
    • /
    • 2003
  • An experimental study was performed to investigate heat transfer characteristics of turbulent swirling flow in an axisymmetric annuli. The static pressure, the local flow temperature, and the wall temperature with decaying swirl were measured by using tangential inlet conditions and the friction factor and the local Nusselt number were calculated for Re=30000∼70000. The local Nusselt number was compared with that obtained from the Dittus-Boelter equation with swirl and without swirl. The results showed that the swirl enhances the heat transfer at the inlet and the outlet of the test tube.

대구경 타원관을 적용한 건조기용 핀-관 열교환기의 성능특성 (Performance Characteristics of Fin-Tube Heat Exchanger having Large Diameter Oval Tube for Dryer)

  • 배경진;차동안;권오경
    • 설비공학논문집
    • /
    • 제27권1호
    • /
    • pp.8-13
    • /
    • 2015
  • The objective of this paper is to provide design data of fin-tube heat exchanger which have a large diameter oval tube for dryer application. In this study, the heat transfer and pressure drop performance characteristics of the fin-tube heat exchanger were compared with Dittus-Boelter and a new correlation equation using Wilson plot method. The simulation results based on section by section method were compared with experimental results. These results showed that a new correlation equation using Wilson plot method provided better prediction, about 3 to 12%, than the Dittus-Boelter equation, from the experiment comparison. Also, the pressure drop of simulation results showed much more deviation with the experimental results.

초임계상태 이산화탄소의 정사각 단면 직덕트 내 난류유동 및 열전달의 전산해석 (Numerical Analysis of Turbulent Carbon Dioxide Flow and Heat Transfer under Supercritical State in a Straight Duct with a Square Cross-Section)

  • 최영돈;주광섭;김용찬;김민수
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1004-1013
    • /
    • 2002
  • Turbulent carbon dioxide flows and cooling heat transfers under supercritical state in a straight duct with a square cross-section are numerically analyzed employing low Reynolds number $\kappa-\varepsilon$ model and algebraic stress model. The flow is assumed to be (quasi-incompressible. Predicted Nusselt number and friction factor are compared with the experimental data, Blasius correlation for friction factor and Dittus-Boelter correlation for Nusselt number. Computational results for the Fanning's friction factor agree well with the all Rohsenow and Choi's correlation, Liou and Hwang's experimental data and Blasius correlation. The results obtained by algebraic stress model agree more with the Liou and Hwang's experimental data, while the results obtained by low Reynolds number $\kappa-\varepsilon$ model agree more with Blasius correlation. In the computation of Nusselt number, Dittus-Boelter correlation can not exactly fit the computational results. Therefore we propose the new correlation$Nu=0.053Re^{0.73}Pr^{0.4}$for the turbulent cooling heat transfer of carbon dioxide under supercritical state.

Velocity and temperature profiles of Al/water micro fluid in a circular tube with swirl

  • Chang, Tae-Hyun;Lee, Kwon Soo;Lee, Chang-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권7호
    • /
    • pp.677-684
    • /
    • 2013
  • A lot study of convection heat transfer on internal flow has been extensively conducted in the past decades using of high specific surface area, increasing heat transfer coefficient, swirling flow and improving the transport properties. This study concerned with the application of a tangential slot swirl generator for improving heat transfer in a horizontal circular copper tube. The Al particles(about $100{\sim}130{\mu}m$) was employed for this experimental work. 3D PIV(particle image velocimetry) technique has employed to measure velocity profiles of Al particles with and without swirl flow. The copper tube is heated uniformly by winding of a heating coil for heat transfer work, having a resistance of 9 ohm per meter. Experiments are performed in the Reynolds number range of 6,800~12,100 with swirl and without swirl using Al particles. Experimental data for comparison of Nusselt number is presented that of with swirl and without swirl along the test tube for the Reynolds numbers. The Nusselt number is improved with increasing of Reynolds numbers or swirl intensities along the test tube. The Nusselt number with swirl flow is about 60.0% to 119.0% higher than that obtained by the Dittus-Boelter equation.

CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(2) - 열유량과 압력강하에 관한 실험 및 예측 - (Experimental Study on Compact type CO2 Gas Cooler(2) - Experiments and Predictions on Heat Flowrate and Pressure Drop -)

  • 오후규;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권2호
    • /
    • pp.259-266
    • /
    • 2010
  • 다중관식 헬리컬 코일형 가스냉각기내 $CO_2$의 열유량과 압력강하는 LMTD 방식을 이용하여 예측하였고 그 결과를 실험값과 비교하였다. $CO_2$와 냉각수의 유량은 각각 0.06~0.075 kg/s이고, 가스냉각기의 냉각압력은 8~10 MPa이다. 초임계 $CO_2$의 냉각시의 열유량과 압력강하는 LMTD 방식을 이용하여 예측하였고, 이때 냉매측 열전달과 압력강하식은 각각 Gnielinski와 Dittus-Boelter 식을 사용하였다. LMTD법으로 예측한 값과 실험값을 비교한 결과, $CO_2$의 열유량과 압력강하는 상대적으로 좋은 일치를 보였다.

3X3 봉다발에서의 국소 열전달에 관한 실험적 연구

  • 정장환;정문기;유성연
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(2)
    • /
    • pp.356-361
    • /
    • 1996
  • 물질전달과 열전달의 유사성을 이용하는 나프탈렌 승화법을 핵연료집합체 모델에 적용하여 봉다발에서의 국소 열전달 계수의 분포를 측정하였다. 실험 모델은 가압경수형 원자로에서 나타나는 부수로 즉, 벽면 부수로와 모서리 부수로 및 내부 부수로로 구성되는 3$\times$3 봉다발이다. 봉다발에서의 국소 열전달 계수 값은 부수로의 형상과 인접한 봉 및 벽면의 영향이 크게 작용하는 것으로 측정되었다. 내부 부수로에 둘러져 있는 봉에서의 국소 열전달계수값은 봉과 봉 사이에서는 부수로 중심 방향보다 낮았고, 평균열전달계수는 Dittus-Boelter의 상관식보다 약간 낮은 값을 보였다. 벽면 부수로에 인접한 봉에서의 열전달계수는 벽면의 영향으로 내부 부수로에 있는 봉보다 상대적으로 낮았으며, 모서리 부수로의 봉에서는 벽면의 영향이 증대되어 더욱 낮게 나타났다.

  • PDF

An Experimental Study on Swirling Flow with Heat Transfer in the Horizontal Circular Annuli

  • Chang Tae-Hyun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권3호
    • /
    • pp.260-274
    • /
    • 2005
  • An experimental investigation was performed to study the characteristics of turbulent swirling flow in the cylindrical annuli. The swirl angle measurements were performed by flow visualization technique using smoke and dye liquid. By using the particle image velocimetry method. this study has found the time-mean velocity distribution and turbulent intensity with swirl for Re=20,000. 30.000. 50.000. and 70,000 along longitudinal sections. The results appear to be physically reasonable. Other experimental study was performed to investigate heat transfer characteristics of turbulent swirling air flow in axisymmetric annuli. The static pressure. the local air flow temperature, and the wall temperature with decaying swirl were measured by using thermocouples and the friction factor and the local Nusselt number were calculated for Re=30,000. 50,000 and 70000. The local Nusselt number was compared with that obtained from the Dittus-Boelter equation with swirl and without swirl, respectively. The results showed that the swirl enhances the heat transfer at the inlet and the outlet of the test tube.

혼합배관 내의 열 경계층 이동으로 인한 고주기 온도요동에 관한 연구 (A Study on High Cycle Temperature Fluctuation Caused by Thermal Striping in a Mixing Tee Pipe)

  • 김석범;박종호
    • 한국유체기계학회 논문집
    • /
    • 제10권5호
    • /
    • pp.9-19
    • /
    • 2007
  • Fluid temperature fluctuations in a mixing tee pipe were numerically analyzed by LES model in order to clarify internal turbulent flows and to develope an evaluation method for high-cycle thermal fatigue. Hot and cold water with an temperature difference $40^{\circ}C$ were supplied to the mixing tee. Fluid temperature fluctuations in a mixing tee pipe is analysed by using the computational fluid dynamics code, FLUENT, Temperature fluctuations of the fluid and pipe wall measured as the velocity ratio of the flow in the branch pipe to that in the main pipe was varied from 0.05 to 5.0. The power spectrum method was used to evaluate the heat transfer coefficient. The fluid temperature characteristics were dependent on the velocity ratio, rather than the absolute value of the flow velocity. Large fluid temperature fluctuations were occurred near the mixing tee, and the fluctuation temperature frequency was random. The ratios of the measured heat transfer coefficient to that evaluated by Dittus-Boelter's empirical equation were independent of the velocity ratio, The multiplier ratios were about from 4 to 6.

냉매와 습공기가 교차하는 2중관에서 전열계수 예측을 위한 연구 (The study on the estimation of heat transfer coefficient through the counterflow concentric tube using refrigerant and moisture air)

  • 조권희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.687-694
    • /
    • 1999
  • This study was conducted to develop new drying process for automatic control and marine engi-neering system. Air-water tests were carried out to investigate dryer performance. The dispersed flow in he dryer test apparatuses was also simulated by using a numerical code which solves the Dittus-Boelter equation for continuous liquid phase and the Reynolds equation of droplet motion for continuous liquid phase and the Reynolds equation of droplet motion for dispersed phase to predict droplet removal efficiency. Proper conditions for dehumidification were optimized by response ambient conditions. When the selected indexes were constrained in the range of 85-98% moisture content above $15^{\circ}$ and more than mass flow rates of moist air 750kg/h. The numerical results were compared with the experimental data pertaining to the removal effi-ciency at chamber stage and overall pressure drop along concentric tubes Good agreement was obtained as for the efficiency while relatively poor agreement was obtained for the relative humidity. The results also showed that the efficiency depended strongly on the relative humidity at the inlet condition which indicated the importance of estimating the heat exchanger length. Effects of some design parameters in both removal efficiency and breakthrough onset condition are discussed.

  • PDF