• 제목/요약/키워드: Dithiolopyrrolone derivatives

검색결과 2건 처리시간 0.017초

Synthesis of Dithiolopyrrolone Derivatives and Their Leukocyte-Increasing Activities

  • Li, Chungang;Sun, Yiping;Wang, Guoping;Tan, Xiangduan
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3489-3494
    • /
    • 2014
  • In search of new antileukopenia agents, twenty dithiolopyrrolone derivatives were synthesized and evaluated for their leukocyte-increasing activities in normal mice. Among the synthesized compounds 4-23, compounds 5 and 6 showed significant leukocyte-increasing activity ( p < 0.01), and compounds 4, 9 and 16 had a moderate effect ( p < 0.05). Compound 5 also displayed stronger leukocyte-increasing activity than that of the positive recombinant human granulocyte colony stimulating factor (rhG-CSF). Above all, compound 5 would be a potential antileukopenia agent which deserved further research.

Enzymatic Synthesis of Dithiolopyrrolone Antibiotics Using Cell-Free Extract of Saccharothrix algeriensis NRRL B-24137 and Biochemical Characterization of Two Pyrrothine N-Acyltransferases in This Extract

  • Saker, S.;Almaksour, Z. Almousa;Chorin, A.C.;Lebrihi, A.;Mathieu, F.
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.26-35
    • /
    • 2014
  • Saccharothrix algeriensis NRRL B-24137 produces naturally different dithiolopyrrolone derivatives. The enzymatic activity of pyrrothine N-acyltransferase was determined to be responsible for the transfer of an acyl group from acyl-CoA to pyrrothine core. This activity was also reported to be responsible for the diversity of the dithiolopyrrolone derivatives. Based on this fact, nine dithiolopyrrolone derivatives were produced in vitro via the crude extract of Sa. algeriensis. Three of them have never been obtained before by natural fermentation: acetoacetyl-pyrrothine, hydroxybutyryl-pyrrothine, and dimethyl thiolutin (holomycin). Two acyltransferase activities, acetyltransferase and benzoyltransferase catalyzing the incorporation of linear and cyclic acyl groups to the pyrrothine core, respectively, were biochemically characterized in this crude extract. The first one is responsible for formation of acetyl-pyrrothine and the second for benzoyl-pyrrothine. Both enzymes were sensitive to temperature changes: For example, the loss of acetyltransferase and benzoyltransferase activity was 53% and 80% respectively after pre-incubation of crude extract for 60 min at $20^{\circ}C$. The two enzymes were more active in neutral and basal media (pH 7-10) than in the acidic one (pH 3-6). The optimum temperature and pH of acetyltransferase were $40^{\circ}C$ and 7, with a $K_m$ value of $7.9{\mu}M$ and a $V_{max}$ of $0.63{\mu}M/min$ when acetyl-CoA was used as limited substrate. Benzoyltransferase had a temperature and a pH optimum at $55^{\circ}C$and 9, a $K_m$ value of $14.7{\mu}M$, and a $V_{max}$ of $0.67{\mu}M/min$ when benzoyl-CoA was used as limited substrate.