• Title/Summary/Keyword: Disulfides

Search Result 46, Processing Time 0.025 seconds

Reaction of Lithium Gallium Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Choe, Jeong Hun;Yun, Mun Yeong;Yun, Jong Hun;Jeong, Dong Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.5
    • /
    • pp.416-421
    • /
    • 1995
  • The approximate rates and stoichiometry of the reaction of excess lithium gallium hydride with selected organic compounds containing representative functional groups were examined under the standard conditions (diethyl ether, 0 $^{\circ}C)$ in order to compare its reducing characteristics with lithium aluminum hydride and lithium borohydride previously reported, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, and amines evolve hydrogen rapidly and quantitatively. However lithium gallium hydride reacts with only one active hydrogen of primary amine. Aldehydes and ketones of diverse structure are rapidly reduced to the corresponding alcohols. Conjugated aldehyde and ketone such as cinnamaldehyde and methyl vinyl ketone are rapidly reduced to the corresponding saturated alcohols. p-Benzoquinone is mainly reduces to hydroquinone. Caproic acid and benzoic acid liberate hydrogen rapidly and quantitatively, but reduction proceeds slowly. The acid chlorides and esters tested are all rapidly reduced to the corresponding alcohols. Alkyl halides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced slowly. Benzonitrile consumes 2.0 equiv of hydride rapidly, whereas capronitrile is reduced slowly. Nitro compounds consumed 2.9 equiv of hydride, of which 1.9 equiv is for reduction, whereas azobenzene, and azoxybenzene are inert toward this reagent. Cyclohexanone oxime is reduced consuming 2.0 equiv of hydride for reduction at a moderate rate. Pyridine is inert toward this reagent. Disulfides and sulfoxides are reduced slowly, whereas sulfide, sulfone, and sulfonate are inert under these reaction conditions. Sulfonic acid evolves 1 equiv of hydrogen instantly, but reduction is not proceeded.

A Second Thioltransferase from Chinese Cabbage: Purification and Characterization

  • Cho, Young-Wook;Park, Eun-Hee;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.133-139
    • /
    • 1999
  • Thioltransferase, also known as glutaredoxin, was previously purified and characterized from Chinese cabbage (Brassica campestris ssp. napus var. pekinensis). However, in the process of gel filtration on Sephadex G-75, there were two activity peaks. In this study, a second thioltransferase (TTase CC-2) in the minor peak of the Sephadex G-75 elution profile was further purified using affinity chromatography on an S-hexylglutathione-agarose column by eluting with buffer solution containing 2.5 mM S-hexylglutathione. It showed a single band on SDS-PAGE indicating that TTase CC-2 is electrophoretically homogeneous. The molecular weight of TTase CC-2 was estimated to be about 22,000 daltons, and its isoelectric point was determined to be 6.73. Its size appears to be atypical and much larger than that of the first thioltransferase (TTase CC-1) from Chinese cabbage, and it can utilize 2-hydroxyethyl disulfide, S-sulfocysteine, and insulin as substrates. S-sulfocysteine was found to be a superior substrate for TTase CC-2. TTase CC-2 also displayed the reducing activity for non-disulfides such as dehydroascorbic acid. Its optimum pH was 8.5, which was consistent with that of TTase CC-1. TTase CC-2 activity was greatly activated by L-cysteine and reduced glutathione, and was found to be less heat-stable compared with TTase CC-1. Molecular and physiological differences between TTase CC-1 and TTase CC-2 remain to be elucidated. Chinese cabbage is the first plant which is known to contain two kinds of thioltransferases.

  • PDF

Constituents and the Antitumor Principle of Allium victoriallis var. platyphyllum

  • Lee, Kyung-Tae;Choi, Jung-Hye;Kim, Dong-Hyun;Son, Kun-Ho;Kim, Won-Bae;Kwon, Sang-Hyuk;Park, Hee-Juhn
    • Archives of Pharmacal Research
    • /
    • v.24 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • To search for cytotoxic components from Allium victoriallis , MTT assays on each extract and an isolated component, gitogenin 3-O-lycotetroside, were performed against cancer cell lines. Cytotoxicities of most extract were shown to be comparatively weak, though $IC_50$ values of $CHCl_3$fraction was found to be <31.3-368.4 $\mu\textrm{g}/ml$. From the incubated methanol extract at $36^{\circ}C, eleven kinds of organosulfuric flavours were predictable by CG-MS performance. The most abundant peak was revealed to be 2-vinyl-4H-1,3-dithiin(1) by its mass spectrum. Further, this extract showed significant cytotoxicities toward cancer cell lies. Silica gel column chromatography of the n-butanol fraction led to the isolation of gitogenin 3-O-lycotetroside (3) along with astragalin (4) and kaempferol 3, 4'-di-O-$\beta$-D-glycoside (5). This steroidal saponin exhibited significant cytotoxic activities ($IC_50$, 6.51-36.5 $\mu\textrm{g}/ml$) over several cancer cell lines. When compound 3 was incubated for 24 h with human intestinal bacteria, a major metabolite was produced and then isolated by silica gel column chromatography. By examining parent and prominent ion peak in FAB-MS spectrum of the metabolite, the structure was speculated not to be any of prosapogenins of 3, suggesting that spiroketal ring were labile to the bacterial reaction. These suggest that disulfides produced secondarily are the antitumor principles.

  • PDF

Reaction of Bis(diethylamino)aluminum Hydride in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Oh Oun Kwon;Jong Mi Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.2
    • /
    • pp.132-138
    • /
    • 1994
  • Bis(diethylamino)aluminum hydride was utilized in a systematic study of the approximate rates and stoichiometry of the reaction of excess reagent with 55 selected organic compounds containing representative functional groups under standardized conditions (THF, $0^{\circ}C$, reagent to compound=4 : 1) in order to define the characteristics of the reagent for selective reductions. The reducing action of BEAH was also compared with that of the parent aluminum hydride. The reducing action of the reagent is quite similar to that of aluminum hydride, but the reducing power is much weaker. Aldehydes and ketones were readily reduced in 1-3 h to the corresponding alcohols. However, unexpectedly, a ready involvement of the double bond in cinnamaldehyde was realized to afford hydrocinnamyl alcohol. The introduction of diethylamino group to the parent aluminum hydride appears not to be appreciably influential in stereoselectivity on the reduction of cyclic ketones. Both p-benzoquinone and anthraquinone utilized 2 equiv of hydride readily without evolution of hydrogen, proceeded cleanly to the 1,4-reduction products. Carboxylic acids and acid chlorides underwent reduction to alcohols slowly, whereas cyclic anhydrides utilized only 2 equiv of hydride slowly to the corresponding hydroxylacids. Especially, benzoic acid with a limiting amount of hydride was reduced to benzaldehyde in a yield of 80%. Esters and lactones were also readily reduced to alcohols. Epoxides examined all reacted slowly to give the ring-opened products. Primary and tertiary amides utilized 1 equiv of hydride fast and further hydride utilization was quite slow. The examination for possibility of achieving a partial reduction to aldehydes was also performed. Among them, benzamide and N,N-dimethylbenzamide gave ca, 90% yields of benzaldehyde. Both the nitriles examined were also slowly reduced to the amines. Unexpectedly, both aliphatic and aromatic nitro compounds proved to be relatively reactive to the reagent. On the other hand, azo- and azoxybenzenes were quite inert to BEAH. Cyclohexanone oxime liberated 1 equiv of hydrogen and utilized 1 equiv of hydride for reduction, corresponding to N-hydroxycyclohexylamine. Pyridine ring compounds were also slowly attacked. Disulfides were readily reduced with hydrogen evolution to the thiols, and dimethyl sulfoxide and diphenyl sulfone were also rapidly reduced to the sulfides.

Reaction of Diisobutylaluminum Hydride-Dimethyl Sulfide Complex with Selected Organic Compounds Containing Representative Functional Groups. Comparison of the Reducing Characteristics of Diisobutylaluminum Hydride and Its Dimethyl Sulfide Complex

  • Cha, Jin-Soon;Jeong, Min-Kyu;Kwon, Oh-Oun;Lee, Keung-Dong;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.10
    • /
    • pp.873-881
    • /
    • 1994
  • The approximate rate and stoichiometry of the reaction of excess diisobutylaluminum hydride-dimethyl sulfide complex($DIBAH-SMe_2$) with organic compounds containing representative functional group under standardized conditions (toluene, $0{\circ}C$) were examined in order to define the reducing characterstics of the reagent and to compare the reducing power with DIBAH itself. In general, the reducing action of the complex is similar to that of DIBAH. However, the reducing power of the complex is weaker than that of DIBAH. All of the active hydrogen compounds including alcohols, amines, and thiols evolve hydrogen slowly. Aldehydes and ketones are reduced readily and quantitatively to give the corresponding alcohols. However, $DIBAH-SMe_2$ reduces carboxylic acids at a faster rate than DIBAH alone to the corresponding alcohols with a partial evolution of hydrogen. Similarly, acid chlorides, esters, and epoxides are readily reduced to the corresponding alcohols, but the reduction rate is much slower than that of DIBAH alone. Both primary aliphatic and aromatic amides examined evolve 1 equiv of hydrogen rapidly and are reduced slowly to the amines. Tertiary amides readily utilize 2 equiv of hydride for reduction. Nitriles consume 1 equiv of hydride rapidly but further hydride uptake is quite slow. Nitro compounds, azobenzene, and azoxybenzene are reduced moderately. Cyclohexanone oxime liberates ca. 0.8 equiv of hydrogen rapidly and is reduced to the N-hydroxylamine stage. Phenyl isocyanate is rapidly reduced to the imine stage, but further hydride uptake is quite sluggish. Pyridine reacts at a moderate rate with an uptake of one hydride in 48 h, while pyridine N-oxide reacts rapidly with consumption of 2 equiv of hydride for reduction in 6h. Similarly, disulfides and sulfoxide are readily reduced, whereas sulfide, sulfone, and sulfonic acid are inert to this reagent under these reaction conditions.

Reducing Characteristics of Potassium Tri-sec-butylborohydride

  • Yoon, Nung-Min;Hwang, Young-Soo;Yang, Ho-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.4
    • /
    • pp.382-388
    • /
    • 1989
  • The approximate rates and stoichiometry of the reaction of excess potassium tri-sec-butylborohydride ($K_s-Bu_3BH$) with selected organic compounds containing representative functional groups were determined under the standard conditions (0$^{\circ}C$, THF) in order to define the characteristics of the reagent for selective reductions. Primary alcohols evolve hydrogen in 1 h, but secondary and tertiary alcohols and amines are inert to this reagent. On the other hand, phenols and thiols evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to the corresponding alcohols. Reduction of norcamphor gives 99.3% endo- and 0.7% exo-isomer of norboneols. The reagent rapidly reduces cinnamaldehyde to the cinamyl alcohol stage and shows no further uptake of hydride. p-Benzoquinone takes up one hydride rapidly with 0.32 equiv hydrogen evolution and anthraquinone is cleanly reduced to the 9,10-dihydoxyanthracene stage. Carboxylic acids liberate hydrogen rapidly and quantitatively, however further reduction does not occur. Anhydrides utilize 2 equiv of hydride and acyl chlorides are reduced to the corresponding alcohols rapidly. Lactones are reduced to the diol stage rapidly, whereas esters are reduced moderately (3-6 h). Terminal epoxides are rapidly reduced to the more substituted alcohols, but internal epoxides are reduced slowly. Primary and tertiary amides are inert to this reagent and nitriles are reduced very slowly. 1-Nitropropane evolves hydrogen rapidly without reduction and nitrobenzene is reduced to the azoxybenzene stage, whereas azobenzene and azoxybenzene are inert. Cyclohexanone oxime evolves hydrogen without reduction. Phenyl isocyanate utilizes 1 equiv of hydride to proceed to formanilide stage. Pyridine and quinoline are reduced slowly, however pyridine N-oxide takes up 1.5 equiv of hydride in 1 hr. Disulfides are rapidly reduced to the thiol stage, whereas sulfide, sulfoxide, sulfonic acid and sulfone are practically inert to this reagent. Primary alkyl bromide and iodide are reduced rapidly, but primary alkyl chloride, cyclohexyl bromide and cyclohexyl tosylate are reduced slowly.

Reaction of Potassium 2-Thexyl-1,3,2-dioxaborinane Hydride with Selected Organic Compounds Containing Representative Functional Groups

  • Jin Soon Cha;Sung Eun Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.5
    • /
    • pp.531-537
    • /
    • 1992
  • The approximate rates and stoichiometry of the reaction of excess potassium 2-thexyl-1,3,2-dioxaborinane hydride(KTDBNH) with 55 selected compounds containing representative functional groups under standardized conditions (tetrahydrofuran, TEX>$0^{\circ}C$, reagent : compound=4 : 1) was examined in order to define the characteristics of the reagent for selective reductions. Benzyl alcohol and phenol evolve hydrogen immediately. However, primary, secondary and tertiary alcohols evolve hydrogen slowly, and the rate of hydrogen evolution is in order of $1^{\circ}$> $2^{\circ}$> $3^{\circ}$. n-Hexylamine is inert toward the reagent, whereas the thiols examined evolve hydrogen rapidly. Aldehydes and ketones are reduced rapidly and quantitatively to give the corresponding alcohols. Cinnamaldehyde is rapidly reduced to cinnamyl alcohol, and further reduction is slow under these conditions. The reaction with p-benzoquinone dose not show a clean reduction, but anthraquinone is cleanly reduced to 9,10-dihydro-9,10-anthracenediol. Carboxylic acids liberate hydrogen immediately, further reduction is very slow. Cyclic anhydrides slowly consume 2 equiv of hydride, corresponding to reduction to the caboxylic acid and alcohol stages. Acid chlorides, esters, and lactones are rapidly and quantitatively reduced to the corresponding carbinols. Epoxides consume 1 equiv hydride slowly. Primary amides evolve 1 equiv of hydrogen readily, but further reduction is slow. Tertiary amides are also reduced slowly. Both aliphatic and aromatic nitriles consume 1 equiv of hydride rapidly, but further hydride uptake is slow. Analysis of the reaction mixture with 2,4-dinitrophenylhydrazine yields 64% of caproaldehyde and 87% of benzaldehyde, respectively. 1-Nitropropane utilizes 2 equiv of hydride, one for hydrogen evolution and the other for reduction. Other nitrogen compounds examined are also reduced slowly. Cyclohexanone oxime undergoes slow reduction to N-cyclohexylhydroxyamine. Pyridine ring is slowly attacked. Disulfides examined are reduced readily to the correponding thiols with rapid evolution of 1 equiv hydrogen. Dimethyl sulfoxide is reduced slowly to dimethyl sulfide, whereas the reduction of diphenyl sulfone is very slow. Sulfonic acids only liberate hydrogen quantitatively without any reduction. Finally, cyclohexyl tosylate is inert to this reagent. Consequently, potassium 2-thexyl-1,3,2-dioxaborinane hydride, a monoalkyldialkoxyborohydride, shows a unique reducing characteristics. The reducing power of this reagent exists somewhere between trialkylborohydrides and trialkoxyborohydride. Therefore, the reagent should find a useful application in organic synthesis, especially in the field of selective reduction.

Investigation of Thiol/Disulfide Balance in Obese Rats with Non-Alcoholic Fatty Liver Disease

  • Tursun, Serkan;Gulerman, Hacer Fulya;Gazyagci, Serkal;Sahin, Yasar;Erel, Ozcan;Neselioglu, Salim
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.5
    • /
    • pp.443-454
    • /
    • 2021
  • Purpose: Due to the increasing prevalence of obesity worldwide, non-alcoholic fatty liver disease (NAFLD) has reached epidemic dimensions over time. NAFLD is the most common cause of childhood chronic liver disease. There is a relationship between NAFLD and oxidative stress. This study aims to investigate the changes in thiol/disulfide homeostasis parameters to determine the oxidant/antioxidant balance in obese rats with diet-induced NAFLD and healthy rats. Methods: Twelve Wistar albino rats were used in this study. Experimentally produced NAFLD obese rats (n=6) and healthy rats were compared. Experimental NAFLD model was created with a special fatty liver diet (Altromin® C1063, Fatty Liver Diet, Exclusivet, Lage, Germany). The biochemical and histopathological features of the groups, as well as serum thiol/disulfide homeostasis parameters, were analyzed and compared. Results: In the experimentally induced NAFLD rat model, they gained more weight than the control group. Steatosis (at least grade 2) occurred in all rats fed with special fatty liver diet for 12 weeks. Histopathologically, no high-grade inflammation was observed in rats with experimental NAFLD after feeding a diet for 12 weeks. Results revealed that aspartate transaminase and alanine transaminase levels were high, albumin levels were low, oxidant stress parameters increased, and antioxidant thiol groups decreased. Conclusion: Experimental NAFLD is characterized by increased oxidant stress accompanying fatty tissue in the liver. Analysis of thiol/disulfide homeostasis parameters in NAFLD can be used in further studies to develop effective treatment options.

Psammaplin A-Modified Novel Radiosensitizers for Human Lung Cancer and Glioblastoma Cells

  • Wee, Chan Woo;Kim, Jin Ho;Kim, Hak Jae;Kang, Hyun-Cheol;Suh, Soo Youn;Shin, Beom Soo;Ma, Eunsook;Kim, Il Han
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.1
    • /
    • pp.15-25
    • /
    • 2019
  • Background: Psammaplin A (PsA) is a radiosensitizer whereas its clinical application is hampered by poor bioavailability. This study aimed to synthesize novel radiosensitizers using PsA as the lead compound. Materials and Methods: Eight homodimeric disulfides were synthesized from corresponding acid and cystamine dihydrochloride in N-hydroxysuccinimide and dicyclohexylcarbodiimide coupling conditions. One monomeric thiol analog was obtained by reduction of homodimeric disulfide with dithiothreitol. Clonogenic assay was used to measure cell survival after irradiation and drug treatment in human lung cancer (A549) and glioblastoma (U373MG) cells. Results and Discussion: Using the PsA backbone, nine compounds were synthesized. Eight compounds showed variable cytotoxicity with 50% inhibitory concentrations ranging $16.14{\mu}M$ to $150.10{\mu}M$ (A549), and $13.25{\mu}M$ to $50.15{\mu}M$ (U373MG). Four and six compounds radiosensitized A549 and U373MG cells, respectively. Two compounds that radiosensitized both cell lines were tested for its inhibitory effects on DNMT1. One of them was shown to significantly inhibit DNMT1 activity. Conclusion: Novel compounds with radiosensitizing activity were synthesized. These compounds have a great potential to serve as a basis for the development of future radiosensitizers. Further investigation is warranted for their clinical application.

Reaction of Sodium Diethyldihydroaluminate with Selected Organic Compounds Containing Representative Functional Groups

  • Yoon Nung Min;Shon Young Seok;Ahn Jin Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.2
    • /
    • pp.199-207
    • /
    • 1992
  • The approximate rates and stoichiometry of the reaction of excess sodium diethyldihydroaluminate (SDDA) with 68 selected organic compounds containing representative functional groups were examined under standard conditions (THF-toluene, $0^{\circ}C$ in order to compare its reducing characteristics with lithium aluminum hydride (LAH), aluminum hydride, and diisobutylaluminum hydride (DIBAH) previously examined, and enlarge the scope of its applicability as a reducing agent. Alcohols, phenol, thiols and amines evolve hydrogen rapidly and quantitatively. Aldehydes and ketones of diverse structure are reduced rapidly to the corresponding alcohols. Reduction of norcamphor gives 11% exo-and 89% endo-norborneol. Conjugated aldehydes such as cinnamaldehyde are rapidly and cleanly reduced to the corresponding allylic alcohols. p-Benzoquinone is mainly reduced to hydroquinone. Hexanoic acid and benzoic acid liberate hydrogen rapidly and quantitatively, however reduction proceeds very slowly. Acid chlorides and esters tested are all reduced rapidly to the corresponding alcohols. However cyclic acid anhydrides such as succinic anhydride are reduced to the lactone stage rapidly, but very slowly thereafter. Although alkyl chlorides are reduced very slowly alkyl bromides, alkyl iodides and epoxides are reduced rapidly with an uptake of 1 equiv of hydride. Styrene oxide is reduced to give 1-phenylethanol quantitatively. Primary amides are reduced very slowly; however, tertiary amides take up 1 equiv of hydride rapidly. Tertiary amides could be reduced to the corresponding aldehydes in very good yield ( > 90%) by reacting with equimolar SDDA at room temperature. Hexanenitrile is reduced moderately accompanying 0.6 equiv of hydrogen evolution, however the reduction of benzonitrile proceeds rapidly to the imine stage and very slowly thereafter. Benzonitrile was reduced to give 90% yield of benzaldehyde by reaction with 1.1 equiv of hydride. Nitro compounds, azobenzene and azoxybenzene are reduced moderately at $0^{\circ}C$, but nitrobenzene is rapidly reduced to hydrazobenzene stage at room temperature. Cyclohexanone oxime is reduced to the hydroxylamine stage in 12 h and no further reaction is apparent. Pyridine is reduced sluggishly at $0^{\circ}C$, but moderately at room temperature to 1,2-dihydropyridine stage in 6 h; however further reaction is very slow. Disulfides and sulfoxides are reduced rapidly, whereas sulfide, sulfone, sulfonic acid and sulfonate are inert under these reaction conditions.