• Title/Summary/Keyword: District Heating system

Search Result 235, Processing Time 0.027 seconds

Aplication of the Thermodynamic Measurement Method for On-site Performance Evaluation of Hot Water Pumps Used in District Heating (지역난방 중온수 펌프의 현장 성능평가를 위한 열역학적 측정법 적용)

  • Park, Cheol Gyu;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.1
    • /
    • pp.50-57
    • /
    • 2021
  • It is very difficult to accurately calculate efficiency of each accessory device constituting the pump system and pump efficiency by the Conventional efficiency measurement method only. Therefore, this study introduced the lastest Thermodynamic pump efficiency measurement method in the district heating pump system for the first time in Korea. As a result, data uncertainty was high by the Conventional method, but the pump and Hydraulic Coupling efficiency values applied the Thermodynamic and Conventional method parallel measurement data were able to derive meaningful results that verified the reliability and adequancy of the pump performance measurement method by performing complementary roles. In additon, as a result of applying the Thermodynamic method to the distirct heating pump system, despite the high temperature environment of up to 120 ℃, it was possible to verify the reliability of the Thermodynamic method, such as high stable data mesurement, and durability of the measurement equipment.

The Consumer Value for Residential Heating Systems (난방방식에 대한 소비자 가치 평가)

  • Won, Doo-Hwan
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.650-655
    • /
    • 2009
  • In this study, a consumer willingness to pays for residential heating systems are estimated by economic valuation method. The major Korean residential heating systems in apartments are central heating system (CH), district heating system (DH), and individual heating system (IH). However, DH and IH systems are adopted in newly constructed apartments. Each heating system has own characteristics which residents can identify and value. 700 households in apartment were surveyed to analyze the preference of the residential heating systems and to estimate willingness to pay. We find that the households in DH system are more satisfied with their heating system than the households in other systems overall and that consumers prefer an apartment with DH system than with IH system and the willingness to pay for IH system is less than DH system. The results indicate that DH system has the relative premium which may be caused by the safety and the convenience to manage the system.

  • PDF

A Study on Solar Heating System Technology Combining Multiple Technology with Mutual-Complementary Method - Low-cost, high efficiency, large-scale use of solar heating system - (다원기술 상호보완식 태양열 난방기술 - 저원가 고효율 규모화 태양열 난방 방안 -)

  • Nan, Bao-Xuan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.6
    • /
    • pp.15-23
    • /
    • 2008
  • The article deals with system technology of a new solar heating system which systematically combines exiting solar collector technology, auxiliary electrical water heating, floor heating system and well insulated construction method and its application of this system to apartment house heating system in the cold region, and also analyzed performance of the new system in terms of technical and economic feasibility. Results shows that energy efficiency approaches up to 50% of the energy consumption of local construction from 1980 to 1981. The implementation of "DQ technology" to floor heating system achieved from 79% to 85% of the energy-saving benefits comparing to other housing units which were supplied by the local district heating plant.

A Study on the Characteristics of Management Costs of Apartment Complexes by the Types of Heating Systems (난방방식에 따른 아파트 관리비용의 실태에 관한 연구 - 대전광역시를 대상으로 -)

  • Koh, Bong-Sung;Kim, Sang-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.607-615
    • /
    • 2012
  • The aim of the study is to estimate the management costs of apartments by the types of heating systems(individual, central, district heating system). Multiple regression analysis was adapted and the used data are derived from 128 apartment complexes in Daegeon-si. The results are as follows; first, the management cost is decreased as a size of apartment is larger, second, the costs of general maintenance, security and repairing of buildings are lower in individual heating system. however, there is no significant differences in cleaning costs by the types of heating systems.

Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter (인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교)

  • Cho, Sung-Hwan;Hong, Seong-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.

Optimization Design of Liquid Desiccant Cooling System (액체 제습식 냉방 시스템의 최적 설계)

  • Jeon, Dong-Soon;Lee, Sang-Jae;Kim, Seon-Chang;Kim, Young-Lyoul;Lee, Chang-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.419-428
    • /
    • 2010
  • This paper presents the optimization process of liquid desiccant cooling system using LiCl aqueous solution as a working fluid. Operating conditions(mass flow rate, conditioner outlet concentration, difference concentration) and design factors for heat exchangers(difference temperature of the district heating water, leaving temperature difference of the conditioner, leaving temperature difference of the regenerator, air temperature difference of the conditioner, air temperature difference of the regenerator) were optimized by response surface method. As a result, we obtained the 7.297 kW of cooling capacity and 0.788 of COP at optimized condition. Effect of difference temperature of hot water on system performances was also examined. As difference temperature of the district heating water increases, the cooling capacity increases and COP decreases.

A Study of Comparative Economic Evaluation for the System of Ground Source Heat Pump and District Heating and Cooling:Focusing on the Analysis of Operation Case (지열히트펌프와 지역냉난방 시스템의 운영사례를 중심으로 경제성 비교분석 연구)

  • Lee, Key Chang;Hong, Jun Hee;Kong, Hyoung Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.3
    • /
    • pp.103-109
    • /
    • 2016
  • The purpose of this study is to perform comparative economic evaluation for the systems of ground source heat pump (GSHP) and district heating and cooling (DHC) by focusing on the analysis of operation case of GSHP. The adapted research object is a public office building located in Seoul. The capacity of ground source pump is about 3,900 kW. Ground heat exchanger is closed loop type. The analysis period for life cycle cost is 30 years. Economic evaluation is assessed from the viewpoints of the following four parts: initial cost, energy cost, maintenance and replacement cost, and environment cost. The total life cycle cost of GSHP is approximately 8,447 million won. The cost of the DHC System is approximately 3,793 million won. The cost of the DHC is approximately 46% lower than GSHP system under the condition of current rate for GSHP and DHC.

Optimization of District Heating Pipes Considering Thermal Fatigue Life (열피로 수명을 고려한 지역난방 배관의 최적화)

  • Ahn Min-Yong;Chang Yoon-Suk;Choi Jae-Boong;Kim Sang-Ho;Kim Youn-Hong;Kim Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.6 s.183
    • /
    • pp.143-150
    • /
    • 2006
  • Recently, in proportion to increased demand on environmentally-friendly heat source, efficient management of district heating(DH) system becomes one of important issue. The objectives of this paper are to systematize data processing of transition temperature, investigate the effect of temperature variations on thermal fatigue and find out a way to improve design fractures of Korean DH pipes. For this purpose, reliable fatigue lift evaluation procedures are examined and applied to quantify thermal fatigue lives. Also, as a prototypal optimization analysis results, mean value of original cross sectional area of selected pipes was reduced 18.6% sustaining their sufficient margins against fatigue failure. So, it is anticipated that the output of this research can be used as useful information of optimal design and operation in the future.

A Nonparametric Prediction Model of District Heating Demand (비모수 지역난방 수요예측모형)

  • Park, Joo Heon
    • Environmental and Resource Economics Review
    • /
    • v.11 no.3
    • /
    • pp.447-463
    • /
    • 2002
  • The heat demand prediction is an essential issue in management of district heating system. Without an accurate prediction through the lead-time period, it might be impossible to make a rational decision on many issues such as heat production scheduling and heat exchange among the plants which are very critical for the district heating company. The heat demand varies with the temperature as well as the time nonlinearly. And the parametric specification of the heat demand model would cause a misspecification bias in prediction. A nonparametric model for the short-term heat demand prediction has been developed as an alternative to avoiding the misspecification error and tested with the actual data. The prediction errors are reasonably small enough to use the model to predict a few hour ahead heat demand.

  • PDF