The study was carried out to characterize the pharmacokinetics after intravenous (iv, 20 mg/kg) and oral (p.o. 100 mg/kg) administration as oxytetracycline (OTC) and tiamulin (TIA) mixture in swine and to determine interaction between OTC and TIA against various pig pathogenic bacteria. The antibacterial effects of OTC in combination with TIA in vitro showed synergistic effect against Salmonella typhimurium 1925, Pasteurella multocida Type A, P. multocida Type D, Krebsiella Pneumoniae 2001, K. Pneumoniae 1560, K. Pneumoniae 2208, Haemophillus pleuropneumonia S 2, and H. pleuropneumonia S 5, but against additive effect E. coli K88ab and S. choleraesuis on the basis of fractional inhibitory concentration (FIC) index. On the while, after i.v. and p.o. administration of OTC and TIA mixture, each OTC and TIA concentrations in plasma were fitted to an open two-compartment model. After i.v. administration of OTC-TIA mixture, the mean distribution half-life ($T_{1/2{\alpha}}$) of OTC and TIA in plasma showed 0.29 h and 0.17 h, and the mean elimination half-life ($T_{1/2{\beta}}$) of those was 4.36 h and 6.64 h, respectively. The mean volume of distribution at steady state ($Vd_{ss}$) of OTC and TIA was $0.85{\ell}/kg$ and $2.44{\ell}/kg$, respectively. After oral administration of OTC and TIA mixture, the mean maximal absorption concentrations ($C_{max}$) of OTC and TIA were $0.60{\mu}g/m{\ell}$ at 1.07 h ($T_{max}$) and $1.68{\mu}g/m{\ell}$ at 1.85 h ($T_{max}$), respectively. The mean elimination half-life ($T_{1/2{\beta}}$) of those showed 6.84 h and 6.36 h. In conclusion, we could suggest in this study that the combination of OTC and TIA may be recommended for the antibacterial therapy against polymicrobial infections, and both OTC and TIA showed large distribution to tissues and high $C_{max}$ after p.o. administration.
The pharmacokinetic of paclitaxel (1 mg/kg, i.v.) was investigated in rabbits with carbon tetrachloride-induced hepatic failure. The area under the plasma concentration-time curve (AUC) of paclitaxel was significantly (p<0.01) increased in severe carbon tetrachloride-induced hepatic failure rabbits ($1364.54{\pm}382.07$ ng/ml$\cdot$hr) compared to that of normal rabbits ($567.52{\pm}141.88$ ng/ml$\cdot$hr), but not significantly in moderate carbon tetrachloride-induced hepatic failure rabbits ($803.1{\pm}208.81$ ng/ml$\cdot$hr). The volume of distribution (Vd) (6.25$\pm$1.56 L) and the elimination rate constant($\beta$) ($0.09{\pm}0.025{\;}hr^{-1}$) of paclitaxel in severe carbon tetrachloride-induced hepatic failure rabbits were significantly (p<0.05) decreased compared to those of normal rabbits ($11.65<{\pm}2.91$L, $0.12{\pm}0.030{\;}hr^{-1}$), but not significantly in moderate carbon tetrachloride-induced hepatic failure rabbits ($9.46{\pm}2.37$ L, $0.10{\pm}0.026{\;}hr^{-1}$). Total body clearance ($CL_t$) of paclitaxel in severe carbon tetrachloride-induced hepatic failure rabbits ($0.733{\pm}0.183$ L/hr/kg) was significantly (p<0.01) decreased compared to that of normal rabbits ($1.762{\pm}0.440$ L/hr/kg), but not significantly in moderate carbon tetrachloride-induced hepatic failure rabbits ($1.245{\pm}0.311$ L/hr/kg). The half-life(t1/2) of paclitaxel in severe carbon tetrachloride-induced hepatic failure rabbits ($7.71{\pm}2.16$ hr) was significantly (p<0.05) increased compared to that of normal rabbits ($5.75{\pm}1.44$hr), but not significantly in moderate carbon tetrachloride-induced hepatic failure rabbits ($6.77{\pm}1.76$hr). This results could be due to inhibition of paclitaxel metabolism in liver disorder rabbits since paclitaxel is essentially metabolized in liver. The findings suggest that the dosage regimen of paclitaxel should be adjusted when the drug would be administered in patients with liver disorder in a clinical situation.
The pyrimidine nucleoside uridine has recently been reported to have a protective effect on cultured human corneal epithelial cells, in an animal model of dry eye and in patients. In this study, we investigate the pharmacokinetic profile of uridine in rabbits, following topical ocular (8 mg/eye), oral (450 mg/kg) and intravenous (100 mg/kg) administration. Blood and urine samples were serially taken, and uridine was measured by high-performance liquid chromatography-tandem mass spectrometry. No symptoms were noted in the animals after uridine treatment. Uridine was not detected in either plasma or urine after topical ocular administration, indicating no systemic exposure to uridine with this treatment route. Following a single intravenous dose, the plasma concentration of uridine showed a bi-exponential decay, with a rapid decline over 10 min, followed by a slow decay with a terminal half-life of $0.36{\pm}0.05$ h. Clearance and volume of distribution were $1.8{\pm}0.6$ L/h/kg and $0.58{\pm}0.32$ L/kg, respectively. The area under the plasma concentration-time curves (AUC) was $59.7{\pm}18.2{\mu}g{\cdot}hr/ml$, and urinary excretion up to 12 hr was ~7.7% of the dose. Plasma uridine reached a peak of $25.8{\pm}4.1{\mu}g/ml$ at $2.3{\pm}0.8$ hr after oral administration. The AUC was $79.0{\pm}13.9{\mu}g{\cdot}hr/ml$, representing ~29.4% of absolute bioavailability. About 1% of the oral dose was excreted in the urine. These results should prove useful in the design of future clinical and nonclinical studies conducted with uridine.
Seo, Jung-Soo;Jeon, Eun-Ji;Jung, Sung-Hee;Park, Myung-Ae;Kim, Na-Young
Journal of Fisheries and Marine Sciences Education
/
v.26
no.2
/
pp.316-321
/
2014
The pharmacokinetics of erythromycin (EM) after oral administration was studied in the cultured olive flounder, Paralichthys olivaceus, using LC/MS/MS. After single- or multiple-dose administration of EM (50, 100, 200 mg/kg body weight and 50 mg/kg for 5 days) by oral route in olive flounder ($350{\pm}40g$, $22{\pm}0.5^{\circ}C$), the concentration in the serum was determined at 1, 3, 6, 9, 24, 72, 120, 168, 264, 360, 504 and 720 h post-dose. The kinetic profile of absorption, distribution and elimination of EM in serum were analyzed fitting to a two-compartment model by WinNonlin program. The area under the concentration-time curve (AUC), maximum concentration ($C_{max}$), time for maximum concentration ($T_{max}$) following oral administration of 50, 100 and 200 mg/kg b.w. and 50 mg for 5 days. EM was $165.3hr^*{\mu}g/m{\ell}$ ($C_{max}$, $34.63{\mu}g/m{\ell}$; $T_{max}$, 1.56 hr), $212.8hr^*{\mu}g/m{\ell}$ ($C_{max}$, $60.38{\mu}g/m{\ell}$; $T_{max}$, 3.99 hr), and $592.37hr^*{\mu}g/m{\ell}$ ($C_{max}$, $63.01{\mu}g/m{\ell}$; $T_{max}$, 4 hr), respectively. The results of this study related to dosage and ${\mu}{\cdot}$withdrawal times could be used for prescription of EM in field for the treatment of bacterial diseases in olive flounder.
Objective: Midazolam is mainly metabolized by cytochrome P450 (CYP) 3A. Inhibition or induction of CYP3A can affect the pharmacological activity of midazolam. The aims of this study were to develop a population pharmacokinetic (PK) model and evaluate the effect of CYP3A-mediated interactions among ketoconazole, rifampicin, and midazolam. Methods: Three-treatment, three-period, crossover study was conducted in 24 healthy male subjects. Each subject received 1 mg midazolam (control), 1 mg midazolam after pretreatment with 400 mg ketoconazole once daily for 4 days (CYP3A inhibition phase), and 2.5 mg midazolam after pretreatment with 600 mg rifampicin once daily for 10 days (CYP3A induction phase). The population PK analysis was performed using a nonlinear mixed effect model ($NONMEM^{(R)}$ 7.2) based on plasma midazolam concentrations. The PK model was developed, and the first-order conditional estimation with interaction was applied for the model run. A three-compartment model with first-order elimination described the PK. The influence of ketoconazole and rifampicin, CYP3A5 genotype, and demographic characteristics on PK parameters was examined. Goodness-of-fit (GOF) diagnostics and visual predictive checks, as well as bootstrap were used to evaluate the adequacy of the model fit and predictions. Results: Twenty-four subjects contributed to 900 midazolam concentrations. The final parameter estimates (% relative standard error, RSE) were as follows; clearance (CL), 31.8 L/h (6.0%); inter-compartmental clearance (Q) 2, 36.4 L/h (9.7%); Q3, 7.37 L/h (12.0%), volume of distribution (V) 1, 70.7 L (3.6%), V2, 32.9 L (8.8%); and V3, 44.4 L (6.7%). The midazolam CL decreased and increased to 32.5 and 199.9% in the inhibition and induction phases, respectively, compared to that in control phase. Conclusion: A PK model for midazolam co-treatment with ketoconazole and rifampicin was developed using data of healthy volunteers, and the subject's CYP3A status influenced the midazolam PK parameters. Therefore, a population PK model with enzyme-mediated drug interactions may be useful for quantitatively predicting PK alterations.
The purpose of this study was to examine the allometric analysis of roxithromycin using pharmacokinetic data. The pharmacokinetic parameters used were $half-life(t_{1/2})$, mean residence time (MRT), clearance (Cl) and volume of distribution at steady state $(V_{ss})$. Relationships between body weight and the pharmacokinetic parameter were based on the empirical formula $Y=aW^b$, where 'Y' is $t_{1/2}$, MRT, Cl, or $V_{ss}$, W the body weight and 'a' is an allometric coefficient (intercept) that is constant for a given drug. The exponential term, 'b', is a proportionality constant that describes the relationship between the pharmacokinetic parameter of interest and body weight. As results of the allometric analyses, the logarithms of $t_{1/2}$, MRT, Cl, and $V_{ss}$ were linearly related to the logarithms of body weight. Results of the current analyses could provide information on appropriate doses of roxithromycin for all species.
The pharmacokinetics of CKD-732 (6-0-4-[dimethyl-aminoethoxy)cinnamoyl]-fumagillolㆍhemioxalate) was investigated in male SD rats and beagle dogs after bolus intravenous administration. The parent compound and metabolites obtained from in vitro and in vivo samples were determined by LC/MS. The main metabolite was isolated and identified as an N-oxide form of CKD-732 by NMR and LC/MS/MS. CKD-732 was metabolized into either M11 or others by rapid hydroxylation, demethylation, and hydrolysis. The blood level following the intravenous route declined in first-order kinetics with $T_{1}$2/$\beta$ values of 0.72-0.78 h for CKD-732 and 0.92-1.09 h for M11 in rats at a dose of 7.5-30 mg/kg. In dogs, $T_{1}$2/$\beta$ values of CKD-732 and M11 were 1.54 and 1.79 h, respectively. Moreover, AUC values increased dose dependently for CKD-732 and M11 in rats and dogs. The CLtot and Vdss did not change significantly with increasing dose, indicating linear pharmacokinetic patterns. The excretion patterns through the urine, bile, and feces were also examined in the animals. The total amount excreted in urine, bile, and feces was 2.13% for CKD-732 and 1.29% for M11 in rats, and 1.58% for CKD-732 and 2.28% for M11 in dogs.
Ann, Byung-Nak;Kim, Shin-Keun;Shim, Chang-Koo;Chung, Youn-Bok
YAKHAK HOEJI
/
v.28
no.4
/
pp.207-215
/
1984
Effects of Ssang Wha Tang (SWT), a blended Chinease traditional medicine, on the pharmacokinetics of sulfobromophthalein (BSP) in the rats of hepatic failure induced by carbon tetrachloride were examined. The disposition of plasma BSP in carbon tetrachloride-treated rats (Group I) and in carbon tetrachloride+SWT-treated rats (Group II) followed a three-compartment model, while those in control group followed two-compartment model. GOT, GPT level and some pharmacokinetic paramiters like plasma clearance but except distribution volume (Vdss) recovered in Group II compared to Group I. Therefore, SWT seemed to have an apparent restoring effect of hepatic function damaged by carbon tetrachloride treatment. From the fact that Vdss of BSP in Group II was considered as an one of the probable mechanisms. More intensive increase in BSP-free fraction ($f_p$) in Group II than that in Group I might also explain the increases of BSP clearance and Vdss in Group II compared to Group I. Assuming no changes in hepatic plasma flow(Q) in each group, hepatic intrinsic clearance($CL^h_{int}$) decreased in Group I did not recovered not at all in Group II. Therefore SWT seemed not to have any restoring effect of true hepaticfunction to biotransform and excrete BSP, and the apparent restoring effect of SWT might be due only to the replacement of BSP-plasma protein binding. Whether $f_p$ is actually higer in Group II than in Group I, and Q is constant in each group are being examined in our laboratory. The changes of Q, which might lead to another conculusions, also should be taken into consideration to clarify the apparent hepatorestoring effect of SWT.
In this study we have investigated the pharmacokinetics and tissue distribution of GX-12, a multiple plasmid DNA vaccine for the treatment of HIV-1 infection. Plasmid DNA was rapidly degraded in blood with a half-life of 1.34 min and was no longer detectable at 90 min after intravenous injection in mice. After intramuscular injection, plasmid DNA concentration in the injection site rapidly declined to less than 1 % of the initial concentration by 90 min post-injection. However, sub-picogram levels (per mg tissue) were occasionally detected for several days after injection. The relative proportions of the individual plasm ids of GX-12 remained relatively constant at the injection site until 90 min post-injection. The concentration of plasmid DNA in tissues other than the injection site peaked at 90 min post-injection and decreased to undetectable levels at 8 h post-injection. The rapid in vivo degradation of GX-12 and absence of persistence in non-target tissues suggest that the risk of potential gene-related toxicities by GX-12 administration, such as expression in non-target tissues, insertional mutagenesis and germline transmission, is minimal.
Kim, Jin-Do;Seo, Jung-Soo;Kim, Ju-Wan;Lee, Joo-Seok;Jung, Sung-Hee;Ji, Bo-Young;Kim, Jin-Woo;Kim, Eung-Oh
Journal of fish pathology
/
v.21
no.2
/
pp.119-127
/
2008
Oxytetracycline (OTC) has been widely used in eel culture as a therapeutic and prophylactic agent because of its broad-spectrum activity against gram-positive and -negative bacteria. The oral treatment dosage of OTC approved for the treatment of edwardsiellosis, furunculosis and vibriosis in eel is 50 mg/kg/day for 3-7 days in Korea. To determine new optimum dose of OTC in eel, the pharmacokinetics of OTC after single oral administration (100 mg/kg B.W., 200 mg/kg B.W.) in cultured eel, Anguilla japonica was examined. In oral dosage of 100 and 200 mg/kg body weight, the highest plasma concentrations of OTC were 1.19±0.42 ㎍/㎖ and 2.69±0.57 ㎍/㎖, respectively. Plasma concentrations of OTC were not detected after 720 h post-dose in all experiments. The kinetic profile of absorption, distribution and elimination of OTC in plasma wwas calculated fitting to a 1- and 2-compartment model by WinNonlin program. The following parameters were obtained for a single dosage of 100 and 200 mg/kg respectively: 1-compartment model, AUC= 82.48 and 432.68 ㎍*h/㎖, Tmax= 3.93 and 14.24 hr, Cmax= 0.94 and 2.34 ㎕/㎖; 2-compartment model, AUC= 448.73 and 530.65 ㎍*h/㎖, Tmax= 6.37 and 8.96 hr, Cmax= 0.90 and 3.21 ㎕/㎖.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.