• Title/Summary/Keyword: Distribution of body heat

Search Result 100, Processing Time 0.024 seconds

Characteristics of Heat Transfer in DLG Platen According to Flow Rate of Coolant (냉각수 유량에 따른 양면 랩그라인딩 정반의 전열특성)

  • Kim, Dongkyun;Kim, Jongyun;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.32 no.2
    • /
    • pp.50-55
    • /
    • 2016
  • Recently, a double-side machining process has been adopted in fabricating a sapphire glass to enhance the manufacturability. Double-side lap grinding (DLG) is one of the emerging processes that can reduce process steps in the fabrication of sapphire glasses. The DLG process uses two-body abrasion with fixed abrasives including pallet. This process is designed to have a low pressure and high rotational speed in order to obtain the required material removal rate. Thus, the temperature is distributed on the DLG platen during the process. This distribution affects the shape of the substrate after the DLG process. The coolant that is supplied into the cooling channel carved in the base platen can help to control the temperature distribution of the DLG platen. This paper presents the results of computational fluid dynamics with regard to the heat transfer in a DLG platen, which can be used for fabricating a sapphire glass. The simulation conditions were 200 rpm of rotational speed, 50℃ of frictional temperature on the pallet, and 20℃ of coolant temperature. The five cases of the coolant flow rate (20~36 l/min) were simulated with a tetrahedral mesh and prism mesh. The simulation results show that the capacity of the generated cooling system can be used for newly developed DLG machines. Moreover, the simulation results may provide a process parameter influencing the uniformity of the sapphire glass in the DLG process.

Comparison of Experimental and FDS Data for Calculating Heat-Affected Range in Forest Fires (산불 열영향 범위 산정을 위한 실험 및 FDS 데이터 비교)

  • Kim, H.S.;Kang, Y.J.;Kim, J.H.;Kim, K.H.;Lee, B.D.;Kim, Jeong Hun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.91-96
    • /
    • 2014
  • This research deals with the combustion experiment of pine trees, which are the most representative species in Korea. Experimental data are compared with theoretical ones using Fire Simulation Program(FDS). It is considered that horizontal/vertical temperature distribution and radiant heat influence on adjacent areas in fire scenes. The linear function for separation distance to temperature was drawn by applying Stefan-Boltzmann's law; $y=112.13133{\times}({\sigma}T^4)^{-0.52916}$ for calculating the separation distance. In combustion experiment, the radiant heat came to $1.4{\sim}1.5kW/m^2$ in case of the separation distance by one meter. The numerical values mean that human body show the critical level of pain after one minute without a protective equipment.

Changes in Microstructure and Texture during Annealing of 0.015% C-1.5% Mn-0~0.5% Mo Steels (0.015% C-1.5% Mn-0~0.5% Mo 강의 어닐링과정에서 미세조직과 집합조직의 변화)

  • Jeong, Woo Chang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.5
    • /
    • pp.251-261
    • /
    • 2011
  • The changes in microstructure and texture during annealing were examined in a series of 0.015% C-1.5% Mn cold-rolled sheet steels with 0~0.5% Mo. Orientation distribution function data were calculated from the (110), (200), (211) pole figures determined on the rolled plane of cold-rolled and annealed steel sheets. Regardless of Mo content and annealing conditions, martensite volume fraction was less than 1.0%, not affecting the texture evolution. Textural change at the cooling stage after heating at $820^{\circ}C$ for 67 sec was not observed. Increasing the Mo content and annealing temperature markedly strengthened the intensities of ${\gamma}$-fiber texture, resulting in the increase in $r_m$ value. The desirable texture evolution for deep drawability in the 0.5% Mo steel may be mainly caused by the grain refining effect of Mo carbide in the hot-rolled steel sheet.

Heat waves impair cytoplasmic maturation of oocytes and preimplantation development in Korean native cattle (Hanwoo)

  • Sa, Soo Jin;Jeong, Jiyeon;Cho, Jaesung;Lee, Seung-Hwan;Choi, Inchul
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.493-498
    • /
    • 2018
  • There has been widespread warming and a general increase in summer temperatures over the Korean peninsula ($0.5^{\circ}C$/10 years from 2001 to 2010). South Korea is transforming into a subtropical region, and the productivity of livestock is affected by the climatic changes. In this study, we investigated whether the summer heat waves affect the developmental competency of Korean native cattle (Hanwoo), a taurine type of cattle with a small portion of indicine varieties. We collected oocytes during the summer (heat stress, HS) and autumn (non-HS condition) and examined the developmental competencies including in vitro maturation and preimplantation embryo development. No significant differences were observed between the HS and non-HS oocytes in nuclear maturation (extrusion of the polar body); however, the cleavage and blastocyst rates were significantly lower in the HS group than those in the non-HS group. The lower developmental competence of the HS oocytes compared to the non-HS is, in part, due to insufficient cytoplasmic maturation because of a higher production of Reactive oxygen species (ROS) levels as well as peri/cortical distributed mitochondria in the HS oocytes after in vitro maturation. Next, we examined the ROS and mitochondria distribution and found a significant increase in the levels of ROS in the HS oocytes and a polarized distribution (pericortical cytoplasm) of mitochondria in the HS oocytes. In summary, impaired cytoplasmic maturation of oocytes from exposure to HS affects the preimplantation embryo development by dysfunction of mitochondria. To improve reproductive performance, embryo transfer using cryopreserved embryos/oocytes is recommended in the hot summer season of South Korea.

Influences of Wearing Different Thermal Insulated Clothings on Thermoregulatory Responses from $25^{\circ}C$ Environment to 18$^{\circ}C$ Environment ($25^{\circ}C$환경에서 $18^{\circ}C$환경으로 노출시 보온력이 상이한 의복의 착용이 체온조절 반응에 미치는 영향)

  • 이종민
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.22 no.7
    • /
    • pp.826-832
    • /
    • 1998
  • In order to understand the influences of wearing clothings with different thermal insula-tions when men were exposed from $25^{\circ}C$ environment to 18$^{\circ}C$ environment, thermoregulatory responses were measured on 4 healthy female college students. Subjects rested wearing T-shirts, trousers, and socks called LC(total weight 541g) at 25$\pm$1$^{\circ}C$, 50$\pm$5% R.H. and then exposed to the room conditioned in 18$\pm$1$^{\circ}C$, 50$\pm$5$^{\circ}C$ R.H. with LC as it was(LC Type) or with T-shirts, trousers, socks, training wear upper garment, the training wear lower garment called HC (total weight 1368g)(HC Type) for 120 min. The results can be summarized as follows: 1) When subjects were exposed from $25^{\circ}C$ environment to 18$^{\circ}C$ environment, decrease of rectal temperature was significantly smaller in LC Type than in HC Type. 2)Increase of heat production and weight loss had no significant difference between two types of clothing. 3)Internal thermal conductance was higher in HC Type and external thermal conductance was higher in LC Type. Therefore total thermal conductance was higher in LC Type than in HC Type. 4)Decrease of skin temperature was greater in LC Type than in HC Type. 5)Subjects felt colder with LC Type than with HC Type, but did not feel differently in comfort sensation between two types of clothing. It was suggested that less decrease of rectal temperature in LC type inspite of more dry heat loss from body might be ascribed to a shift of blood from the shell area to the core area originating in the vasoconstriction and the lowered internal thermal conductance. In conclu-sion, the importance of the state of internal heat distribution in the homeostasis seemed to be reaffirmed.

  • PDF

ASSESSMENT OF INFERIOR ALVEOLAR NERVE DAMAGE USING DIGITAL INFRARED THERMOGRAPHIC IMAGING (디지털 적외선 체열 검사를 사용한 하치조 신경 손상의 평가)

  • Lee, Ji-Yeon;Lee, Jae-Hoon;Kim, Chul-Hwan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.6
    • /
    • pp.488-496
    • /
    • 2004
  • Oral & Maxillofacial surgery can lead to complications that result in abnormal sensation or movement. Inferior alveolar nerve(IAN) injury can result in dysesthesia, paresthsia of the lower lip and chin, so patients presenting with IAN damage suffer from sensory loss. But diagnosis of the nerve injury is largely limited to the subjective statements made by the patient. Distribution of sympathetic nerves parallels the distribution of the somatosensory nerves. Loss of sensory tone causes a concomitant loss of sympathetic activity, resulting in vasodilation of the cutaneous blood vessels that demonstrates greater heat loss. Digital infrared thermographic imaging(DITI) detects infra-red radiation given off by body. DITI can detect minute difference in temperature from different parts of the body and translates the amount of heat into quantitative data. The area of different temperature correlated with pain or disease can be visualized by corresponding color. The objective of this study was to determine the efficacy of DITI in objectively assessing IAN injury. The 19 normal subjects and the 14 patients underwent DITI scan. The normal subjects received unilateral IAN block anesthesia with 2 ml of 2% lidocaine (IAN bolck group) to evaluate temporary alteration in nerve function. Patient group were patients with unilateral IAN damage (dysesthesia or paresthesia) after surgical treatment(Mn. 3rd molar Extraction, etc.). The surgical procedure performed within 6 months of test. The results were as follows. 1. No significant differences in temperature were found between left and right sides of the lower lip and chin in the control group. 2. Significant temperature differences were found between the anesthetized and non-anesthetized sides of the lower lip and chin in the IAN block group. 3. Significant temperature differences were found between the involved and uninvolved sides of the lower lip and chin areas of the experimental group. The results of the study show that DITI can be an useful and effective means of objectively assessing and visualizing IAN damage.

Temperature thread multiscale finite element simulation of selective laser melting for the evaluation of process

  • Lee, Kang-Hyun;Yun, Gun Jin
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.1
    • /
    • pp.31-51
    • /
    • 2021
  • Selective laser melting (SLM), one of the most widely used powder bed fusion (PBF) additive manufacturing (AM) technology, enables the fabrication of customized metallic parts with complex geometry by layer-by-layer fashion. However, SLM inherently poses several problems such as the discontinuities in the molten track and the steep temperature gradient resulting in a high degree of residual stress. To avoid such defects, thisstudy proposes a temperature thread multiscale model of SLM for the evaluation of the process at different scales. In microscale melt pool analysis, the laser beam parameters were evaluated based on the predicted melt pool morphology to check for lack-of-fusion or keyhole defects. The analysis results at microscale were then used to build an equivalent body heat flux model to obtain the residual stress distribution and the part distortions at the macroscale (part level). To identify the source of uneven heat dissipation, a liquid lifetime contour at macroscale was investigated. The predicted distortion was also experimentally validated showing a good agreement with the experimental measurement.

An Analysis Finite Element for Elasto-Plastic Stresses Considerating Phase Transformation at the Quenching Process(I) - From Austenite to Pearlite - (퀜칭과정에서 상변태를 고려한 탄소성 열응력의 유한요소해석(I) -오스테나이트에서 퍼얼라이트로의 변태-)

  • Kim, Ok-Sam;Koo, Bon-Kwon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.4
    • /
    • pp.233-243
    • /
    • 1994
  • Constitutive relation of thermoelasto-plastic material undergoing phase transformation during quenching process were developed on the basic of continuum thermodynamics. The metallic structure, temperature and residual stresses distributions were numerically calculated by the finite element technique. The metallic structure were defined by transformation from austenite to pearlite and characterized as a fuction of thermal history and mixture rule of phase. On the distribution of thermal stress along the radial direction, axial and tangential stresses are compressive in the surface, and tential in the inner part. Radial stress is tensile in the whole body. The reversion of residual stress takes plase at 11.5~15.5mm from the center.

  • PDF

The Thermal Analysis of Pole Mount Mold Transformer with One-body Molding by Duct Condition (일체형 주상용 몰드 변압기의 덕트에 따른 열해석 특성 연구)

  • 조한구;이운용;박영두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.3
    • /
    • pp.348-352
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and ow loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by finite element method(FEM) to analyze winding temperature rise. In this paper, The thermal analysis of pole mount mold transformer with one body molding by duct condition is investigated and the test result of temperature rise is compared with simulation data.

The Temperature Distribution Analysis of Mold transformer (100kVA 주상용 몰드 변압기의 온도분포 해석)

  • Cho, Han-Goo;Lee, Un-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.125-129
    • /
    • 2004
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss, but it needs some cooling method because heat radiation between each winding is difficult. The life of transformer is significantly dependent on the thermal behavior in windings. Many transformer designers have calculated temperature distribution and hot spot point by FEM(finite element method) to analyze winding temperature rise. In this paper, the temperature distribution and thermal stress analysis of 100kVA pole cast resin transformer for power distribution are investigated by FEM program.

  • PDF