• Title/Summary/Keyword: Distribution Journal

Search Result 56,942, Processing Time 0.068 seconds

A Study on the Development of a Work Operation Process Chart for Smart Distribution Board Fabrication (스마트 분전반 제작을 위한 작업 공정도 개발에 관한 연구)

  • Lee, Byung-Seol;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • This study presented the strength of the materials and parts for smart distribution board fabrication, and developed a work operation process chart for smart distribution board fabrication. This work operation process chart for smart distribution board fabrication complied with SPS-KEMC regulations, and the applicable range and object are less than 1,000 V and 1,000 Hz for the AC distribution board and less than 1,500 V for the DC distribution board. The power supply is 3 phase 4 wires ($3{\Phi}$ 4W), divided into a single phase circuit and a 3 phase circuit. In addition, the circuit was configured so that the leakage current flowing through the distribution line of the load could be monitored in real time by using the sensor module installed at the rear end of the circuit breaker. Therefore, the administrator can easily find the risk factor of the load since engineer can check the leakage current of each distribution line. In addition, if a leakage current greater than standard value flows, it is possible to generate an alarm against a short circuit and cut off the leakage current. The work operation process chart for the smart distribution board fabrication consists of the following steps: raw and subsidiary materials, sheet metal work, tube making, welding, painting, busbar fabrication, assembly and wiring, product inspection, shipment, etc. Moreover, symbols, ${\Delta}$, ${\nabla}$, ${\bigcirc}$, ${\Rightarrow}$, etc. were used according to the type of work and work progress so that workers can easily understand the progress of the work.

A Study on Loop operation of 154kV Substation Distribution line for Stable power supply (안정적 전력공급을 위한 154kV 변전소 배전선로간 연계운영에 관한 연구)

  • Kim, Kwang-Ho;Son, Myoung-Gwon;Jeong, Jong-Chan
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.221-228
    • /
    • 2009
  • For a stable supply of electric power, periodical inspection of the electric facilities and repair of the distribution lines are required. In case of any unexpected accidents, looped operation among distribution lines may be necessary in order to supply electricity through the sound lines, separating the faulted lines. As a result of this study, it was found that normal looped operation became impossible when phase difference of the looped distribution lines is more than 3 degrees compared with the voltage supply of the distribution lines. Therefore, for a stable supply of electric power to Chuncheon, it is judged to be desirable that looped operation of the distribution lines coming from the same substation M. Tr Bank shall be performed in principle and in case of looped operation with the substation of different system, looped operation among the lines shall be performed after voltage regulation of the substation M. Tr Bank, maintaining similar voltages and load supply volume in order to avoid phase difference through checking the operation conditions of each substation M. Tr Banks. And when looped operation among the distribution lines is scheduled, voltage regulation schedule has been established so far by calculating maximum supply volume through the transformer of the substation and the maximum load volume through the distribution lines but in the future, looped operation of the distribution lines shall be carried out by removing voltage difference with regulating tap or load of the surrounding transformers, with giving prior notice to the substation operators.

  • PDF

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.3
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.

유통산업의 경쟁촉진을 위한 규제개혁 방안

  • 김성철
    • Journal of Distribution Research
    • /
    • v.2 no.2
    • /
    • pp.153-172
    • /
    • 1997
  • The distribution sector is affected by a wide range of regulations. Many of these are related to health and safety, others are related to urban planning and environmental issues, whereas some mainly have an economic basis. But, regulations many be unduly restrictive, in which case they can drive up costs and ultimately prices, or they may, in some cases, reduce consumer choice. Unduly restrictive regulations could also increase costs indirectly, by reducing competition and thus lead to lower productivity growth. In the past few years, distribution sector has gone through drastic changes due to deregulation and market opening. Implementation of regulatory reforms served as an opportunity to change laws and systems which had been an obstacle to development of distribution sector. Market opening of distribution sector became a turning point to promote competition among domestic and foreign firms. However, for small and medium scale of the typical retail enterprises which were in no position to compete in terms of prices, additional facilities, and services, faced a threat of diminished trading area, and even of their existence. Because, large firms may have greater market power than small firms, as they can more easily extract favorable terms when procuring goods, and may also be able to deter entry by advertising outlays or access to the best sites. In addition, larger chain stores armied with sufficient capital dominated trading area and reduced customer's welfare by abusing their monopoly power when competing with other shops, and are often cited as an example of adverse effects of local monopoly. In order to minimize such adverse effects and to foster competition, regulatory reforms in distribution sector should set its goal to promote sound and stable distribution activities through market principle and restoring competition principle, and ultimately to boost customers welfare. Therefore, deregulation in distribution sector should be implemented in a way to promote customers welfare, eliminate entry barriers, and expand competition principle such as productivity and efficiency competition. However, it should be also recognized that deregulation of system alone is not enough to develop the distribution sector. To compete in a increasingly concentrated industry, small enterprises increasingly engage in co-operative arrangements, such as buying groups, strategic alliances or franchise agreements.

  • PDF

Influence of the Statistical Distribution of Bioassay Measurement Errors on the Intake Estimation (바이오어쎄이 측정오차의 통계적 분포가 섭취량 추정판에 미치는 영향)

  • Lee, T.Y.;Kim, J.K.
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.17-23
    • /
    • 2006
  • The purpose of this study is to provide the guidance necessary for making a selection of error distributions by analyzing influence of statistical distribution for a type of bioassay measurement error on the intake estimation. For this purpose, intakes were estimated using maximum likelihood method for cases that error distributions are normal and lognormal, and comparisons between two distributions for the estimated intakes were made. According to the results of this study, in case that measurement results for lung retention are somewhat greater than the limit of detection it appeared that distribution types have negligible influence on the results. Whereas in case of measurement results for the daily excretion rate, the results obtained from assumption of a lognormal distribution were 10 % higher than those obtained from assumption of a normal distribution. In view of these facts, in case where uncertainty component is governed by counting statistics it is considered that distribution type have no influence on intake estimation. Whereas in case where the others are predominant, it is concluded that it is clearly desirable to estimate the intake assuming a lognormal distribution.

Multivariate empirical distribution plot and goodness-of-fit test (다변량 경험분포그림과 적합도 검정)

  • Hong, Chong Sun;Park, Yongho;Park, Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.4
    • /
    • pp.579-590
    • /
    • 2017
  • The multivariate empirical distribution function could be defined when its distribution function can be estimated. It is known that bivariate empirical distribution functions could be visualized by using Step plot and Quantile plot. In this paper, the multivariate empirical distribution plot is proposed to represent the multivariate empirical distribution function on the unit square. Based on many kinds of empirical distribution plots corresponding to various multivariate normal distributions and other specific distributions, it is found that the empirical distribution plot also depends sensitively on its distribution function and correlation coefficients. Hence, we could suggest five goodness-of-fit test statistics. These critical values are obtained by Monte Carlo simulation. We explore that these critical values are not much different from those in text books. Therefore, we may conclude that the proposed test statistics in this work would be used with known critical values with ease.

An Empirical Study on the Technology Innovation Distribution, Technology Imitation Distribution and New International Trade Theory (기술혁신분포, 기술모방분포 그리고 신 국제무역이론에 대한 실증연구)

  • Cho, Sang Sup;Min, Kyung Se;Cho, Byung Sun;Hwang, Ho Young
    • Journal of Korea Technology Innovation Society
    • /
    • v.21 no.2
    • /
    • pp.860-874
    • /
    • 2018
  • This study aims at empirical analysis of the new international trade theory (Melitz, 2012, 2014, 2015). The new international trade theory is centered on the effect of heterogeneous firms on the technological competitiveness on the trade effect and resulted from the important assumption that the form of the enterprise technology distribution determines the trade effect. This study empirically estimated the distribution of enterprise technology in Korean manufacturing. For the purpose of this study, we divided Korea's total enterprise technology distribution into technological innovation and technical imitation distribution, then statistically verified the distribution type and evaluated the appropriateness of the new international trade theory. Based on the empirical results of this study, we briefly suggested the direction of technology policy.

Coordinated Voltage Control Scheme for Multi-Terminal Low-Voltage DC Distribution System

  • Trinh, Phi Hai;Chung, Il-Yop;Kim, Taehoon;Kim, Juyong
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1459-1473
    • /
    • 2018
  • This paper focuses on voltage control schemes for multi-terminal low-voltage direct current (LVDC) distribution systems. In a multi-terminal LVDC distribution system, there can be multiple AC/DC converters that connect the LVDC distribution system to the AC grids. This configuration can provide enhanced reliability, grid-supporting functionality, and higher efficiency. The main applications of multi-terminal LVDC distribution systems include flexible power exchange between multiple power grids and integration of distributed energy resources (DERs) using DC voltages such as photovoltaics (PVs) and battery energy storage systems (BESSs). In multi-terminal LVDC distribution systems, voltage regulation is one of the most important issues for maintaining the electric power balance between demand and supply and providing high power quality to end customers. This paper focuses on a voltage control method for multi-terminal LVDC distribution system that can efficiently coordinate multiple control units, such as AC/DC converters, PVs and BESSs. In this paper, a control hierarchy is defined for undervoltage (UV) and overvoltage (OV) problems in LVDC distribution systems based on the control priority between the control units. This paper also proposes methods to determine accurate control commands for AC/DC converters and DERs. By using the proposed method, we can effectively maintain the line voltages in multi-terminal LVDC distribution systems in the normal range. The performance of the proposed voltage control method is evaluated by case studies.

A Measurements on the Characteristics of Electron Energy Distribution Function of Radio-Frequency Inductively Couples Plasma (고주파 유도결합 플라즈마의 전자에너지 분포함수 계측에 관한 연구)

  • 하장호;전용우;최상태;박원주;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.82-86
    • /
    • 1999
  • Electron Energy Distribution Function(EEDF) were treasured In Radio-Frequency Inductively Coupled Plasma(RFlCP) using a probe rrethocl Measurerrents were conducted in argon discharge for pressure from 10[mTorr] to 4O[mTorr] and input rf power from 100[W] to 600[W] and flow rate from 3[sccm] to 12[sccm]. Spatial distribution of electron energy distribution function were measured for discharge with same aspoct ratio (R/L=2). Electron energy distribution function strongly depended on both pressure and power. Electron energy distribution function increased with increasing flow rate. Radial distribution of the electron energy distribution function were peaked in the plasma center. Normal distribution of the electron energy distribution function were peaked in the center between quartz plate and substrate. From the results, we can find out the generation mechanism of Radio Frequency Inductively Coupled Plasma. And these results contribute the application of a simple Inductively Coupled Plasma(ICP).a(ICP).

  • PDF

On the Application of Zp Control Charts for Very Small Fraction of Nonconforming under Non-normal Process (비정규 공정의 극소 불량률 관리를 위한 Zp 관리도 적용 방안 연구)

  • Kim, Jong-Gurl;Choi, Seong-Won;Kim, Hye-Mi;Um, Sang-Joon
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.1
    • /
    • pp.167-180
    • /
    • 2016
  • Purpose: The problem for the traditional control chart is that it is unable to monitor the very small fraction of nonconforming and the underlying distribution is the normal distribution. $Z_p$ control chart is useful where it controls the vert small fraction on nonconforming. In this study, we will design the $Z_p$ control chart in order to use under non-normal process. Methods: $Z_p$ is calculated not by failure rate based on attribute data but using variable data. Control limit for non-normal $Z_p$ control chart is designed based on ${\alpha}$-risk calculated by cumulative distribution function of Burr distribution. ${\beta}$-risk, which is for performance evaluation, obtains in the Burr distribution's cumulative distribution function and control limit. Results: The control limit for non-normal $Z_p$ control chart is designed based on Burr distribution. The sensitivity can be checked through ARL table and OC curve. Conclusion: Non-normal $Z_p$ control chart is able to control not only the very small fraction of nonconforming, but it is also useful when $Z_p$ distribution is non-normal distribution.