• Title/Summary/Keyword: Distribution Journal

Search Result 56,965, Processing Time 0.073 seconds

A Study on the Decision Algorithm of the Location of ESS for Power Distribution System (배전용 ESS 연계위치 결정 알고리즘에 관한 연구)

  • Hong, Soon-Il;Hwang, In-Sung;Moon, Jong-Fil;Jung, Won-Wook
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.1
    • /
    • pp.37-41
    • /
    • 2018
  • In this paper, the ESS(Energy Storage System) is interconnected in order to reduce the maximum load in the distribution system and the target location of the ESS is set to be close to the rated voltage. We also applied the weights to nodes with large capacity and number of customers in the system. In the future, the interconnected location of the ESS was determined until 2029 in consideration of the load increase rated of the system. We propose a cooperative decision algorithm of interconnected location of ESS for Power Distribution System.

Effect of central hole on fuel temperature distribution

  • Yarmohammadi, Mehdi;Rahgoshay, Mohammad;Shirani, Amir Saied
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1629-1635
    • /
    • 2017
  • Reliable prediction of nuclear fuel rod behavior of nuclear power reactors constitutes a basic demand for steady-state calculations, design purposes, and fuel performance assessment. Perfect design of fuel rods as the first barrier against fission product release is very important. Simulation of fuel rod performance with a code or software is one of the fuel rod design steps. In this study, a software program called MARCODE is developed in MATLAB environment that can analyze the temperature distribution, gap conductance value, and fuel and clad displacement in both solid and annular fuel rods. With a comparison of the maximum fuel temperature, fuel average temperature, fuel surface temperature, and gap conductance in solid and annular fuel, the effects of a central hole on the fuel temperature distribution are investigated.

An Theoretical Investigation on the Minimization of Birefringence Distribution in Optical Disk Substrate (광디스크 기판 성형시 발생하는 복굴절의 최소화를 위한 이론적 연구)

  • 김종성;강신일
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.103-111
    • /
    • 2000
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage density using short wavelength laser are being developed. The birefringence distribution is regarded as one of the most important optical properties for optical disk. In the present study, the birefringence distrubution is calculated using the Leonov model for viscoelastic constitutive equations and Cross/WLF model for viscosity approximation. The effects of processing conditions upon the development of birefringence discosity approximation. The effects of processing conditions upon the development of birefringence distribution in the optical disk were examined theoretically. It was found that the values of the birefringence distributions were very sensitive to the mold wall temperature history which minimizes the birefringence distribution. The analytical results showed the possibility of improving mechanical and optical properties in the optical disk substrates by active control of the mold wall temperature history.

  • PDF

Effects of Turbulence Diffusion and Secondary Flows on the Particle Concentration Distribution in Single Stage ESP (1단 전기집진기에서 난류확산과 2차유동이 입자의 농도분포에 미치는 영향)

  • 정상현;김상수;김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2271-2282
    • /
    • 1995
  • Numerical simulations for the effects of secondary flow and turbulence diffusion on the particle concentration distributions have been carried out for the single stage electrostatic precipitator. The electrohydrodynamic secondary flow, particle concentration distribution and collection efficiency have been evaluated as a function of dimensionless parameters such as Re, $N_{end}$, $P_{e}$ x. The results of simulations show that for increasing secondary flow intensity the concentration distribution is drastically deformed and collection efficiency is decreased which is more than due to turbulent diffusion.n.n.

A Service Restoration Algorithm for Power Distribution Networks Applying the Multi-Agent System

  • Jung Kwang-Ho;Cho Myeon-Song;Lee Seung-Jae;Lim Seong-Ll
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.125-131
    • /
    • 2005
  • Service restoration is one of the most important missions in distribution system operation. This paper proposes a multi-agent system approach to distribution system restoration. Every relay is developed as an agent by adding its own intelligent, self-tuning and communication ability. The relay agent independently calculates and corrects its restoration index through communication with neighboring agents and its own intelligence. The proposed algorithm is applied to a simple network to demonstrate its soundness and effectiveness.

Analysis of Operation Characteristics of OCR and Recloser in Power Distribution System with SFCL (배전계통에 초전도한류기 적용시 OCR 및 Recloser 동작특성 분석)

  • Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.214-219
    • /
    • 2012
  • In this paper, the method of protective coordination is studied to install Superconducting Fault Current Limiter (SFCL) to power distribution system. If SFCL is installed, the protective coordination is not operated well because of the decreased fault current. Thus, the resetting method of protective devices is presented to coordinate protection system in power distribution system with resistor-type SFCL. The presented methods are divided into three parts; OCR, OCR-Recloser, OCR-Recloser-Recloser. The presented methods are proved through case studies using PSCAD/EMTDC simulation.

Nonlinear Tolerance Allocation for Assembly Components (조립품을 위한 비선형 공차할당)

  • Kim, Kwang-Soo;Choi, Hoo-Gon
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.39-44
    • /
    • 2003
  • As one of many design variables, the role of dimension tolerances is to restrict the amount of size variation in a manufactured feature while ensuring functionality. In this study, a nonlinear integer model has been modeled to allocate the optimal tolerance to each individual feature at a minimum manufacturing cost. While a normal distribution determines statistically worst tolerances with its symmetrical property in many previous tolerance allocation studies, a asymmetrical distribution is more realistic because its mean is not always coincident with a process center. A nonlinear integer model is modeled to allocate the optimal tolerance to a feature based on a beta distribution at a minimum total cost. The total cost as a function of tolerances is defined by machining cost and quality loss. After the convexity of manufacturing cost is checked by the Hessian matrix, the model is solved by the Complex Method. Finally, a numerical example is presented demonstrating successful model implementation for a nonlinear design case.

Reliability Evaluation of Distributed Generation and Distribution System Using Load Duration Curve (Load Duration Curve를 이용한 분산전원과 배전계통의 신뢰도 산출)

  • Bae, In-Su;Kim, Jin-O
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.518-524
    • /
    • 2005
  • This paper presents an analytical method for the reliability evaluation of distribution system, including the distributed generations. Unlike the large sized generations of transmission system, the distributed generations have complexities in analyzing and determining the operation. In the process of evaluate reliability, it can be shown that the analytical method is simpler than the Monte-Carlo simulation and the method using Load Duration Curve model is more accurate than that using peak load model. The modeling of distributed generation to analysis distribution system reliability using LDC is proposed in this Paper, and is compared with the MCS method as a result of case studies.

A New Evaluation Methodology of Service Restoration Capability in Distribution Systems (배전계통 복구능력 평가방안 및 응용)

  • Im, Seong-Il;Jin, Bo-Geon;Lee, Seung-Jae
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.333-340
    • /
    • 2002
  • To secure a service continuity is one of the most important mission in the ower distribution system operation. In this paper the necessary and sufficient condition to guarantee 100% service restoration capability for any fault on the system is reported. An evaluation methodology of the restoration capability(or restorability) is developed based on the developed restoration conditions. Applications of the developed concept to the system operation in the normal and emergency states, that would enhance the supply reliability of the system are described. They include enhancement of restoration capability adapting to load change, identification of best open switch and supervised switch positions.

A Protective Effectiveness Measure for Distribution Systems (배전계통 보호시스템의 보호능력의 평가방법)

  • 현승호;이승재;임성일;최인선;신재항;최면송
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.5
    • /
    • pp.249-256
    • /
    • 2004
  • This paper suggests a novel evaluation scheme of protective effectiveness in distribution systems. The adequacy of every parameter in a protective device is evaluated for the setting or correction rules. Then, the protective effectiveness of a device, device-wise effectiveness, is obtained by the combination of the parametric evaluation results. The coordination-wise effectiveness between devices can be calculated by evaluating the parameters which contribute the performance of coordination. The protective effectiveness of the whole system can be obtained by combining the device-wise and coordination-wise effectiveness values. The rules, in this paper, are categorized into three groups; rules for single parameter, rules for coordination between parameters, and rules for coordination between protective devices to form a hierarchical calculation model. The proposed method is applied to a typical distribution network to show its effectiveness.