• 제목/요약/키워드: Distribution Fault

검색결과 1,024건 처리시간 0.029초

비접지 계통에서 영상전류 위상을 이용한 고장표시 생성 알고리즘 (A Fault Indicator Generation Algorithm using Phase Angle of Zero-Sequence Current in Ungrounded System)

  • 임희택;임일형;최면송;이승재
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1141-1149
    • /
    • 2008
  • Most faults are single-phase-to-ground fault in ungrounded system. The fault currents of single-phase-to-ground are much smaller than detection thresholds of measurement devices, so detecting single-phase-to-ground faults is difficult and important in ungrounded system. This paper proposed to a FI(Fault Indicator) generation algorithm in ungrounded system. The algorithm just using line-to-line voltage and zero-sequence current detects fault line, fault phase, fault section and FI(Fault Indicator) at terminal device, This paper also proposed to application plan for this algorithm. In the case study, the proposed algorithm has been testified in demo system by Matlab/Simulink simulations.

보호기기 동작시 전류파형과 탈락부하량을 고려한 방사상 배전계통 고장점 추정방법 (A New Diagnosis of Actual Fault Location in Distribution Power Systems by Comparing the Current Waveform and the Amount of Interrupted Load)

  • 최면송;이승재;이덕수;진보건;현승호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권2호
    • /
    • pp.99-106
    • /
    • 2003
  • In this paper, an intelligent fault location and diagnosis system is proposed. The proposed system identifies the fault location in two-step procedure. The first step identifies candidates of fault location using an fault distance calculation using an iterative method. The second step is diagnosis the actual fault location in the candidates by comparing the current waveform patterns with the expected operation of the protective devices and considering the interrupted load after the operation protective device. The simulations results in the case study demonstrates a good performance of the proposed fault location and diagnosis system.

루프운전 배전선로의 고장계산 방법 (A Fault Calculation Method for Loop Structured Distribution Feeders)

  • 황지희;임성일
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1633-1638
    • /
    • 2016
  • Loop system arrangement in the primary distribution system has been increased for higher reliability of power supply to the customer. This paper presents a new fault calculation method for the loop structured unbalanced distribution feeders. Mathematical modeling method of the distribution system and superposition principal based fault calculation procedures are provided. In order to establish feasibility of the proposed method, various case studies have been performed using Matlab power system toolbox.

배전계통 리클로우저 기반의 자율적 고장복구 방법론 (The Self-Fault Restoration Methodology based on the Recloser in the Distribution Systems)

  • 고윤석
    • 전기학회논문지
    • /
    • 제58권9호
    • /
    • pp.1681-1688
    • /
    • 2009
  • This paper proposes a new fault restoration method which adopts the recloser as top agent to release the problems of the data concentration and fault processing delay of the existing DAS(distribution Automation System) under the ubiquitous distribution system. In proposed method, top agent collects the data based on the multi-casting communication with the tie switches of the interconnection point, and then selects a closed switch(tie switch) to transfer the sound outage load to other feeders based on the heuristic search strategy step by step until the load transfer work is finished. Here, a new heuristic rule is developed which can guarantee the relational load balancing and line loss from the collected voltage data. Finally, the several faults are simulated for typical multi-section and multi-interconnection distribution system to prove the effectiveness of the proposed strategy, in particular, for each simulation cases, the load balancing index and line loss index of the obtained solution from the proposed method is compared with those of all of feasible solutions.

PSCAD/EMTDC를 활용한 LVDC 고장분석 (A Study on the Fault Analysis of the LVDC Using PSCAD/EMTDC)

  • 김수환;최규완;문종필;김태훈;김주용
    • 전기학회논문지P
    • /
    • 제65권3호
    • /
    • pp.219-223
    • /
    • 2016
  • DC microgrid system is attracted attention in the world, because DC distribution system is more energy efficient than AC distribution system. To analyse the contribution effects of distributed generation(DG) in LVDC distribution system through modeling the Rectifier, DC/DC converter, Energy Storage System(ESS) and Photovoltaic(PV). using PSCAD/EMTDC. This paper analyses fault response characteristics in LVDC distribution system according to the interconnection and islanding operation of DG. Based on research results on the paper, direction for development of fault current reduction method for LVDC distribution system is suggested.

초전도한류기와 인근 배전설비의 신뢰도에 관한 연구 (A Study on the Reliability of Superconducting Fault Current Limiter and Adjacent Distribution Equipments)

  • 배인수;김성열;김진오
    • 전기학회논문지
    • /
    • 제58권11호
    • /
    • pp.2122-2127
    • /
    • 2009
  • This study presents the failure rate and repair rate of Superconducting Fault Current Limiter(SFCL) and adjacent distribution equipments. When the fault current penetrated SFCL, the supply of electric power to the customers can be partly continued. It is expected that SFCL makes to improve the reliability index of customers. Contrary to the expectations, the series connection between SFCL and distribution system could deteriorate the reliability index. To evaluate the reliability index in the distribution system including SFCL, the failure rate and repair rate of SFCL are required as well as that of distribution equipments. Also, the insertion of SFCL makes to change the failure rate and repair rate of adjacent equipments. This study proposes a method to calculate the failure rate and repair rate of a component combining SFCL and adjacent equipments.

Development of Fault Detector for Series Arc Fault in Low Voltage DC Distribution System using Wavelet Singular Value Decomposition and State Diagram

  • Oh, Yun-Sik;Han, Joon;Gwon, Gi-Hyeon;Kim, Doo-Ung;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.766-776
    • /
    • 2015
  • It is well known that series arc faults in Low Voltage DC (LVDC) distribution system occur at unintended points of discontinuity within an electrical circuit. These faults can make circuit breakers not respond timely due to low fault current. It, therefore, is needed to detect the series fault for protecting circuits from electrical fires. This paper proposes a novel scheme to detect the series arc fault using Wavelet Singular Value Decomposition (WSVD) and state diagram. In this paper, the fault detector developed is designed by using three criterion factors based on the RMS value of Singular value of Approximation (SA), Sum of the absolute value of Detail (SD), and state diagram. LVDC distribution system including AC/DC and DC/DC converter is modeled to verify the proposed scheme using ElectroMagnetic Transient Program (EMTP) software. EMTP/MODELS is also utilized to implement the series arc model and WSVD. Simulation results according to various conditions clearly show the effectiveness of the proposed scheme.

모의배전계통에 두 트리거 전류레벨을 이용한 초전도한류기의 전류제한 특성 분석 (Current Limiting Characteristics of a SFCL with Two Triggered Current Limiting Levels in a Simulated Power Distribution System)

  • 고석철;한태희
    • 한국전기전자재료학회논문지
    • /
    • 제26권2호
    • /
    • pp.134-139
    • /
    • 2013
  • When the accident occurred in power distribution system, it needs to control efficiently the fault current according to the fault angle and location. The flux-lock type superconducting fault current limiters (SFCL) can quickly limit when the short circuit accidents occurred and be made the resistance after the fault current. The flux-lock type SFCL has a single triggering element, detects and limits the fault current at the same time regardless of the size of the fault current. However, it has a disadvantage that broken the superconductor element. If the flux-lock type SFCL has separated structure of the triggering element and the limiting element, when large fault current occurs, it can reduce the burden of power and control fault current to adjust impedance. In this paper, this system is composed by triggering element and limiting element to analyze operation of limiting current. When the fault current occurs, we analyzed the limiting and operating current characteristics of the two triggering current level, and the compensation characteristics of bus-voltage sag according to the fault angle and location.

자기단 전원임피던스 추정을 이용한 송전선 고장점표정 알고리즘 (Transmission Line Fault Location Algorithm Using Estimated Local Source Impedance)

  • 권영진;김수환;강상희
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.885-890
    • /
    • 2009
  • A fault location algorithm using estimated local source impedance after a fault is proposed in this paper. The method uses after fault data only at the local end. It uses the negative sequence current distribution factor for more accurate estimation. The proposed algorithm can keep up with the variation of the local source impedance. Therefore, the proposed algorithm especially is valid for a transmission line interconnected to a wind farm that the equivalent source impedance changes continuously. The performance of the proposed algorithm was verified under various fault conditions using the Simpowersystem of MATLAB Simulink. The proposed algorithm is largely insensitive to the variation in fault distance and fault resistance. The test results show a very high accurate performance.

이산 웨이블릿 변환과 신경회로망을 이용한 FRTU의 고장판단 능력 개선에 관한 연구 (A Study for the Improvement of the Fault Decision Capability of FRTU using Discrete Wavelet Transform and Neural Network)

  • 홍대승;고윤석;강태구;박학열;임화영
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1183-1190
    • /
    • 2007
  • This paper proposes the improved fault decision algorithm using DWT(Discrete Wavelet Transform) and ANNs for the FRTU(Feeder Remote Terminal Unit) on the feeder in the power distribution system. Generally, the FRTU has the fault decision scheme detecting the phase fault, the ground fault. Especially FRTU has the function for 2000ms. This function doesn't operate FI(Fault Indicator) for the Inrush current generated in switching time. But it has a defect making it impossible for the FI to be operated from the real fault current in inrush restraint time. In such a case, we can not find the fault zone from FI information. Accordingly, the improved fault recognition algorithm is needed to solve this problem. The DWT analysis gives the frequency and time-scale information. The neural network system as a fault recognition was trained to distinguish the inrush current from the fault status by a gradient descent method. In this paper, fault recognition algorithm is improved by using voltage monitoring system, DWT and neural network. All of the data were measured in actual 22.9kV power distribution system.