• Title/Summary/Keyword: Distribution Fault

Search Result 1,024, Processing Time 0.029 seconds

Development of Fault Detection Algorithm on distribution lines using neural network & fuzzy logic (신경 회로망-퍼지로직을 이용한 배전선로 사고 검출 기법의 개발)

  • Choi, J.H.;Jang, S.I.;Eom, J.P.;Park, J.S.;Kim, K.H.;Kim, N.H.;Kang, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1440-1443
    • /
    • 1999
  • This paper proposes fault detection method using a neural network & fuzzy logic on distribution lines. Fault on distribution lines is simulated using EMTP. The pattern of high impedance fault on pebbles, ground and short-circuit fault were take as the learning model. In this paper proposed fault detection method is evaluated on various conditions. The average values after analyzing fault current by FFT of even odd harmonics and fundamental rms were used for the neural network input. Test results were verified the validity of the proposed method

  • PDF

Simulation for current limiting characteristics of a resistive SFCL in the 22.9 kV distribution system (배전급 저항형 초전도 한류기의 전류제한특성에 대한 EMTDC 시뮬레이션)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.268-271
    • /
    • 2000
  • We simulated the current limiting characteristics of a resistive SFCL with 16 ${\Omega}$ of resistance for a single line-to-ground fault in the 22.9 kV system. The transient current during the fault increased up to 6.33 kA, 5.80 kA and 3.71 kA without SFCL at the fault angles of 0${\circ}$,45${\circ}$ and 90${\circ}$, respectively. An resistive SFCL limited the fault current to 2.27 kA in a half cycle. The quench resistance of 16 ${\Omega}$ was suggested to be appropriate to limit the fault current in the 22.9 kV distribution system.

  • PDF

Development of Fault Detection and Classification Method in Distribution Lines (신경회로망을 이용한 배전선 사고 검출 기법의 개발)

  • Kim, K.H.;Choi, J.H.;Chang, S.I.;Kang, Y.C.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1114-1117
    • /
    • 1998
  • Recent applications of neural networks to power system fault diagnosis have provided positive results and have shown advantages in process speed over conventional approaches. This paper describes the application of neural network to fault detection and classification in distribution lines using the fundamental component, 2-5th harmonics index, even and odd harmonics index, and zero phase current. The Electromagnetic Transients Program (EMTP) is used to obtain fault patterns for the training and testing of neural networks. The proposed fault detection and classification method in distribution lines is obtained by analysing the difference among normal, HIF, ground fault, short circuit fault condition.

  • PDF

Algorithm for Detecting, Indentifying, Locating and Experience to Develop the Automate Faults Location in Radial Distribution System

  • Wattanasakpubal, Choowong;Bunyagul, Teratum
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2010
  • This paper presents the design of an algorithm to detect, identify, and locate faults in radial distribution feeders of Provincial Electricity Authority (PEA). The algorithm consists of three major steps. First, the adaptive algorithm is applied to track/estimate the system electrical parameter, i.e. current phasor, voltage phasor, and impedance. Next process, the impedance rule base is used to detect and identify the type of fault. Finally, the current compensation technique and a geographic information system (GIS) are applied to evaluate a possible fault location. The paper also shows the results from field tests of the automate fault location and illustrates the effectiveness of the proposed fault location scheme.

A Study for the Improvement of Fault Detection on Fault Indicator using DWT and Neural Network (신경회로망과 DWT를 이용한 고장표시기의 고장검출 개선에 관한 연구)

  • Hong, Dae-Seung;Yim, Hwa-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.46-48
    • /
    • 2007
  • This paper presents research about improvement of fault detection algorithm in FRTU on the feeder of distribution system. FRTU(Feeder Remote Terminal Unit) is applied to fault detection schemes for phase fault, ground fault, and cold load pickup and Inrush restraint functions distinguish the fault current and the normal load current. FRTU is occurred FI(Fault Indicator) when current is over pick-up value also inrush current is occurred FRTU indicate FI. Discrete wavelet transform(DWT) analysis gives the frequency and time-scale information. The neural network system as a fault detector was trained to discriminate inrush current from the fault status by a gradient descent method. In this paper, fault detection is improved using voltage monitoring system with DWT and neural network. These data were measured in actual 22.9kV distribution system.

  • PDF

Study on Improvement of Overcurernt Relay (OCR)'s Operation Due to Application of Superconducting Fault Current Limiter (SFCL) in Power Distribution System with a Dispersed Generation (분산전원이 도입된 배전계통에 초전도한류기 적용에 따른 과전류계전기 동작향상 연구)

  • Lim, Seung-Taek;Lim, Sung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.300-304
    • /
    • 2017
  • Due to the introduction of various types of dispersed generations (DGs) with larger capacity in a power distribution system, the short-circuit current is expected to be increased, which more requires for the effective fault current limiting methods. As one of the promising countermeasures, the superconducting fault current limiter (SFCL) has been noticed. However, the decreased fault current by SFCL affects the operation of the overcurrent relay (OCR), representative protective device in a power distribution system. In this paper, the operation of the overcurrent relay due to the application of a SFCL in a power distribution system with DG linked by its bus line was analysed through the short-circuit tests. To analyze the effect of the SFCL application in a power distribution system with DG, the experimental simulated circuits were designed and the short-circuit tests for the power distributed system assembled with the DG, the OCR and the SFCL were carried out. Through the analysis on the short-circuit tests, the application of the SFCL in a power distribution system with DG could be confirmed to be contributed to the operational improvement of overcurrent relay.

A Novel Fault Location Method for a Line to Line Fault Using Inverse Theorem of Matrix on Electric Power Lines (행렬의 역정리를 이용한 전력공급 선로의 상간단락 사고지점 검출 방법)

  • Lee Duck-su;Choi Myeon-song;Hyun Seung-ho
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1321-1324
    • /
    • 2004
  • Unbalanced systems, such as distribution systems, have difficulties in fault locations due to single-phase laterals and loads. In this paper, a novel fault location algorithm is suggested for a line to line faults using inverse theorem of matrix on electric power lines. The fault location for balanced systems has been studied using the current distribution factor, by a conventional symmetrical transformation, but that for unbalanced systems has not been investigated due to their high complexity The proposed algorithms overcome the limit of the conventional algorithm using the conventional symmetrical transformation, which requires the balanced system and are applicable to any electric power system but are particularly useful for unbalanced distribution systems. The simulation results oriented by the real distribution system are presented to show its effectiveness and accuracy.

  • PDF

A Study on the Superconducting Fault Current Limiter in the Simple $3{\phi}$ Power System (유도형 고온 초전도 한류기의 단순 3상 계통 적용에 대한 연구)

  • Lee, S.J.;Joo, M.S.;Lee, C.J.;Lee, J.K.;Ko, T.K.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.253-255
    • /
    • 1997
  • This paper, which is one of the researches to limit high fault-current, treats the application of an inductive High Tc Superconducting Fault Current Limiter(HTSFCL) to distribution systems. In case that the inductive HTSFCL is applied to distribution systems, this paper presented the usefulness and the commercial possibility of it through computer simulation. If the inductive HTSFCL is established in distribution systems, after fault, it limits fault current effectively within a few millisecond, so it contributes to stability of power distribution system. Especially as the system with the HTSFCL is compared with the system without it, the system is improved in stability.

  • PDF

Research on the Influence of Inter-turn Short Circuit Fault on the Temperature Field of Permanent Magnet Synchronous Motor

  • Qiu, Hongbo;Yu, Wenfei;Tang, Bingxia;Yang, Cunxiang;Zhao, Haiyang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1566-1574
    • /
    • 2017
  • When the inter-turn short circuit (ITSC) fault occurs, the distortion of the magnetic field is serious. The motor loss variations of each part are obvious, and the motor temperature field is also affected. In order to obtain the influence of the ITSC fault on the motor temperature distribution, firstly, the normal and the fault finite element models of the permanent magnet synchronous motor (PMSM) were established. The magnetic density distribution and the eddy current density distribution were analyzed, and the mechanism of loss change was revealed. The effects of different forms and degrees of the fault on the loss were obtained. Based on the loss analysis, the motor temperature field calculation model was established, and the motor temperature change considering the loop current was analyzed. The influence of the fault on the motor temperature distribution was revealed. The sensitivity factors that limit the motor continuous operation were obtained. Finally, the correctness of the simulation was verified by experiments. The conclusions obtained are of great significance for the fault and high temperature demagnetization of the permanent magnet analysis.

The Study on Correction of Protective Relaying Set Value for the Power Electric Network Paralleled with Wind Farm (풍력전단지의 계통 연계 운전에 따른 보호 계전기 설정치 정정에 관한 고찰)

  • Jang, Sung-Il;Choi, Don-Man;Choi, Jeong-Hwan;Kim, Kwang-Ho;Oh, Jong-Youl;Kim, Joo-Yearl
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.487-490
    • /
    • 2002
  • Wind farm paralleled with electric power network can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the power line with wind farm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator. Consequently, it is difficult to detect the fault happened in the distribution network connected with wind generator. This paper describes the influence of wind turbine generator on the protective relaying system for detecting the fault occurred in a power line network. Simulation results shows that the fault current depends on the fault impedance, location, and the capacity of wind farm and distribution network load.

  • PDF