Journal of the Korean Data and Information Science Society
/
v.24
no.6
/
pp.1309-1317
/
2013
There are various parameter estimation methods for the generalized exponential distribution under progressive type I interval censoring. Chen and Lio (2010) studied the parameter estimation method by the maximum likelihood estimation method, mid-point approximation method, expectation maximization algorithm and methods of moments. Among those, mid-point approximation method has the smallest mean square error in the generalized exponential distribution under progressive type I interval censoring. However, this method is difficult to derive closed form of solution for the parameter estimation using by maximum likelihood estimation method. In this paper, we propose two type of approximate maximum likelihood estimate to solve that problem. The simulation results show the obtained estimators have good performance in the sense of the mean square error. And proposed method derive closed form of solution for the parameter estimation from the generalized exponential distribution under progressive type I interval censoring.
Geomagnetic transfer function is generally estimated by choosing transfer to minimize the square sum of differences between observed values. If the error structure sccords to the Gaussian distribution, standard least square(LS) can be the estimation. However, for non-Gaussian error distribution, the LS estimation can be severely biased and distorted. In this paper, the Gaussian error assumption was tested by Q-Q(Quantile-Quantile) plot which provided information of real error structure. Therefore, robust estimation such as regression M-estimate that does not allow a few bad points to dominate the estimate was applied for error structure with non-Gaussian distribution. The results indicate that the performance of robust estimation is similar to the one of LS estimation for Gaussian error distribution, whereas the robust estimation yields more reliable and smooth transfer function estimates than standard LS for non-Gaussian error distribution.
Geomechanical parameters are important factors for engineering projects during design, construction and support stages of tunnel and dam projects. Geostatistical estimation methods are known as one of the most significant approach at estimation of Geomechanical parameters. In this study, Azad dam headrace tunnel is chosen to estimate Geomechanical parameters such as Rock Quality Designation (RQD) and uniaxial compressive strength (UCS) by ordinary kriging as a geostatistical method. Also Rock Mass Rating (RMR) distribution is presented along the tunnel. Main aim in employment of geostatistical methods is estimation of points that unsampled by sampled points.To estimation of parameters, initially data are transformed to Gaussian distribution, next structural data analysis is completed, and then ordinary kriging is applied. At end, specified distribution maps for each parameter are presented. Results from the geostatistical estimation method and actual data have been compared. Results show that, the estimated parameters with this method are very close to the actual parameters. Regarding to the reduction of costs and time consuming, this method can use to geomechanical estimation.
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.9
/
pp.24-36
/
1996
In this paper, we discuss the errors in selectivity estimation using the multilevel grid file (MLGF). We first demonstrate that the estimatio errors stem from the uniformity assumption that records are uniformly distributed in their belonging region represented by an entry in a level of an MLGF directory. Bsed on this demonstration, we then investigate five factors affecting the accuracy of estimation: (1) the data distribution in a region (2) the number of records stored in an MLFG (3) the page size, (4) the query region size, and (5) the level of an MLFG directory. Next we present the tendancy of estimation errors according to the change of values for each factor through experiments. The results show that the errors decrease when (1) the distribution of records in a region becomes closer to the uniform one, (2) the number of records in an MLFG increases, (3) the page size decreases, (4) the query region size increases, and (5) the level of an MLFG directory employed as data distribution information becomes lower. After the definition of the granule ratio, the core formula representing the basic relationship between the estimation errors and the above five factors, we finally examine the change of estimation errors according to the change of the values for the granule ratio through experiments. The results indicate that errors tend to be similar depending on the values for the granule ratio regardless of the various changes of the values for the five factors. factors affecting the accuracy of estimation:
Defect size distribution is a probability density function for the defects that occur on wafers or glasses during semiconductor/LCD fabrication. It is one of the most important information to estimate manufacturing yield using well-known statistical estimation methods. The defects are detected by automatic optical inspection (AOI) facilities. However, the data that is provided from AOI is not accurate due to resolution of AOI and its defect detection mechanism. It causes distortion of defect size distribution and results in wrong estimation of the manufacturing yield. In this paper, I suggest a size conversion method and a maximum likelihood estimator to overcome the vague defect size information of AOI. The methods are verified by the Monte Carlo simulation that is constructed as similar as real situation.
Kim, Chang-Wan;Lee, Min-Ho;Jung, Sung-Won;Yoo, Dong-Hoon
Proceedings of the Korea Water Resources Association Conference
/
2007.05a
/
pp.855-859
/
2007
It is essential to obtain accurate and highly reliable streamflow data for water resources planning, evaluation and management as well as design of hydraulic structures. A new discharge estimation method, which is named 'non-dimensional velocity distribution and index-velocity method,' was proposed in this research. This method showed very close channel discharges which were calculated with the exiting velocity-area method. When velocity-area method is used to estimate channel discharge, it is required to observe point velocities at every desired point and vertical using a current meter like Price-AA. However 'non-dimensional velocity distribution and index-velocity method' is used, it become optional to observe point velocities at every desired point and vertical. But this method can not be applied for the cases of very complex and strongly asymmetric channel cross-sections because non-dimensional velocity distribution by entropy concept may be quite biased from that of natural rivers.
In the estimation of diameter distribution in a stand using Weibull distribution function, the calculation method of experimental distribution was presented in previous paper. This study was to estimate the diameter distribution of Korean pine stands by Weibull distribution which represents Gamma function, with mean diameter and mean basal-area diameter of the random sample trees. The results obtained fitted the diameter distribution in experimental stands. Thus, this method appears to be used for the estimation of diameter distribution in a stand as well as for the analysis and prediction of stand construction for the future.
In car insurance, the loss ratio is the ratio of total losses paid out in claims divided by the total earned premiums. In order to minimize the loss to the insurance company, estimating extreme quantiles of loss ratio distribution is necessary because the loss ratio has essential prot and loss information. Like other types of insurance related datasets, the distribution of the loss ratio has heavy-tailed distribution. The Peaks over Threshold(POT) and the Hill estimator are commonly used to estimate extreme quantiles for heavy-tailed distribution. This article compares and analyzes the performances of various kinds of parameter estimating methods by using a simulation and the real loss ratio of car insurance data. In addition, we estimate extreme quantiles using the Hill estimator. As a result, the simulation and the loss ratio data applications demonstrate that the POT method estimates quantiles more accurately than the Hill estimation method in most cases. Moreover, MLE, Zhang, NLS-2 methods show the best performances among the methods of the GPD parameters estimation.
The purpose of this study is to provide the guidance necessary for making a selection of error distributions by analyzing influence of statistical distribution for a type of bioassay measurement error on the intake estimation. For this purpose, intakes were estimated using maximum likelihood method for cases that error distributions are normal and lognormal, and comparisons between two distributions for the estimated intakes were made. According to the results of this study, in case that measurement results for lung retention are somewhat greater than the limit of detection it appeared that distribution types have negligible influence on the results. Whereas in case of measurement results for the daily excretion rate, the results obtained from assumption of a lognormal distribution were 10 % higher than those obtained from assumption of a normal distribution. In view of these facts, in case where uncertainty component is governed by counting statistics it is considered that distribution type have no influence on intake estimation. Whereas in case where the others are predominant, it is concluded that it is clearly desirable to estimate the intake assuming a lognormal distribution.
Communications for Statistical Applications and Methods
/
v.16
no.3
/
pp.463-477
/
2009
Parameter estimation methods such as maximum likelihood estimation method, probability weighted moments method, regression method have been popularly applied to various extreme value models in numerous literature. Among three methods above, the performance of regression method has not been rigorously investigated yet. In this paper the regression method is compared with the other methods via Monte Carlo simulation studies for estimation of parameters of the Generalized Extreme Value(GEV) distribution and the Generalized Pareto(GP) distribution. Our simulation results indicate that the regression method tends to outperform other methods under small samples by providing smaller biases and root mean square errors for estimation of location parameter of the GEV model. For the scale parameter estimation of the GP model under small samples, the regression method tends to report smaller biases than the other methods. The regression method tends to be superior to other methods for the shape parameter estimation of the GEV model and GP model when the shape parameter is -0.4 under small and moderately large samples.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.