• Title/Summary/Keyword: Distribution Diagrams

Search Result 124, Processing Time 0.022 seconds

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths (미세균열의 길이 분포를 이용한 결의 평가)

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.3
    • /
    • pp.165-180
    • /
    • 2015
  • Jurassic granite from Geochang was analysed with respect to the characteristics of the rock cleavage. The phases of distribution of microcracks were well evidenced from the enlarged photomicrographs(${\times}6.7$) of the thin section. In this study, the length - cumulative frequency diagrams were used for expressing the distribution characteristics of microcrack. The diagrams for the six directions were arranged in the magnitude of density(${\rho}$). These diagrams show an order of H2 < H1 < G2 < G1 < R2 < R1 from the related chart. Among six diagrams, the diagram for hardway 2(H2) occupies the lowermost region on the left. On the contrary, the diagram for rift 1(R1) occupies the uppermost region on the right. Curve patterns of the two diagrams change from uniform to exponential distribution type in accordance with the increased density. The overall distribution characteristics of the diagrams were well evidenced from the magnitude of the exponent(${\lambda}$) and length of line oa related to the exponential straight line. The magnitude of exponent governing the values of slope(${\theta}$) is inversely proportional to the values of microcrack parameters such as number(N), length(L) and density. On the contrary, length of line oa is directly proportional to the values of the above three parameters. Above microcrack parameters related to the order of arrangement of diagrams show an order of hardway(H1 + H2) < grain(G1 + G2) < rift(R1 + R2). The distribution characteristics of progressive variation are found among the six diagrams. The order of arrangement of the diagrams indicates a relative magnitude of the rock cleavage. Meanwhile, the parameters such as slope, exponent, density and length of line oa were arranged in an order of H2 < H1 < G2 < G1 < R2 < R1. The variation curves of a smooth quadratic function are shown from the related chart. From the correlation chart between density and the above parameters, a common regularity following power-law correlation function was derived. Finally, the analysis for the rock cleavage was conducted through the combination between the diagram and microcrack parameter. This type of combination contribute to the progressivity in evaluation for the rock cleavage.

A Study on the Analysis of Elements and Practical Using Method in Space Diagram of UN Studio (UN Studio의 공간 다이어그램 구성요소와 활용방법 분석)

  • Choi, Eun-Hee;Eune, Ju-Hyun;Kwon, Young-Gull
    • Archives of design research
    • /
    • v.19 no.5 s.67
    • /
    • pp.75-84
    • /
    • 2006
  • The aims of this study are to examine the conceptual contents of space diagram, and to find its elements and practical applications by analyzing the UN Studio. The Findings of this study are as follows: firstly, the conceptual contents represented in space diagram are classified into four elements - motif, flow, relationship, and distribution. Secondly, space diagram is used in program development, schematic design, and preliminary design of design process phases. Thirdly, the elements based on the case diagrams include five elements: context analysis, object analysis, time-behavior analysis, modeling analysis, and space analysis. Fourthly, in practical use, diagrams with motif concept is usually used in modeling analysis, and diagram with flow concept is commonly used in the analysis of time-behavior and object. Diagrams with relationship concept is mostly used in space analysis, secondly in analysis of context and modeling. Further, diagrams with distribution concept is usually used in space analysis. If one uses these findings for design projects in practical business or education, it would be helpful in design conception and development as well as of design information structuralization.

  • PDF

Diopside DSD (crystal size distribution) in the Contact Metamorphic Aureole (Hwanggangni Formation) near the Daeyasan Granite Goesan, Korea (괴산지역 대야산 화강암체 주변 접촉변성대(황강리층)에서의 투휘석 결정 크기분포)

  • Kim, Sangmyung;Kim, Hyung-Shik
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.161-167
    • /
    • 1996
  • The CSD (crystal size distribution) of diopside crystals in the calc-silicate hornfels of the Hwanggangni Formation intruded by the Cretaceous Daeyasan granite shows the patterns of continuous nucleation and growth. There is correlation between the distance from the intrusion contact and the slopes from the linear part of log(population density) vs. size diagrams. In the log(population density) vs. size diagrams of the samples systematically collected from the intrusion contact, two different groups are recognized; the slopes for the samples near the intrusion contact (horizontal distance from the contact less than 50m) are gentler (1500$cm^{-1}$) than those for the samples away from the intrusion contact (2500$cm^{-1}$, distance from the contact greater than 100 m). These differences may reflect the differences in growth rates and crystallization time, or the differences in diopside-forming reactions. All of the log(population density) vs. size diagrams show depletion of smaller crystals. The observed depletion may be due to Ostwald ripening or the changes in nucleation rates as the reactant phases diminishes. Similar grouping is also possible for the observed degree of depletion of smaller crystals; the depletion decreases with increasing distance from the intrusion contact, suggesting temperature-dependent rates of Ostwald ripening.

  • PDF

Evaluation for Rock Cleavage Using Distribution of Microcrack Lengths and Spacings (3) (미세균열의 길이 및 간격 분포를 이용한 결의 평가(3))

  • Park, Deok-Won;Park, Eui-Seob;Jung, Yong-Bok;Lee, Tae-Jong;Song, Yoon-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • The characteristics of the rock cleavage of Jurassic Geochang granite were analysed using the parameters from the length and spacing-cumulative frequency diagrams. The evaluation for three planes and three rock cleavages was performed using the 25 parameters such as (1~2) slope angle(${\alpha}^{\circ}$and ${\beta}^{\circ}$), (3) intersection angle(${\alpha}-{\beta}^{\circ}$), (4) exponent difference(${\lambda}_S-{\lambda}_L$), (5~12) length of line(oa, ob, ol, os, ss', ll' and sl') and (13~15) length ratio(ol/os, ss'/ll' and ll'/sl'), (16) mean length((ss'+ll')/2), (17~23) area (${\Delta}oaa^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}obb^{\prime}$, ${\Delta}oaa_a^{\prime}$, ${\Delta}obb_a^{\prime}$, ${\Delta}ll^{\prime}s^{\prime}$, ${\Delta}ss^{\prime}l^{\prime}$ and ⏢$ll^{\prime}ss^{\prime}$) and (24~25) area difference(${\Delta}obb^{\prime}-{\Delta}oaa^{\prime}$ and ${\Delta}obb_a^{\prime}-{\Delta}oaa_a^{\prime}$). Firstly, the values of the 11 parameters(group I: No. 1, 3~4, 7, 9~10, 13, 15~16, 20 and 25), the 3 parameters(group II: No. 5, 8 and 17) and the 2 parameters(group III: No. 12 and 22) are in orders of H(hardway) < G(grain) < R(rift), R < G < H and G < H < R, respectively. On the contrary, the values of parameters belonging to the above three groups show reverse orders for three planes. Secondly, the generalized chart for three planes and three rock cleavages were made. From the related chart, the distribution types formed by the two diagrams related to lengths and spacings were derived. The diagrams related to spacings show upward curvature in the chart of rift plane(G1 & H1, R') and hardway(H1 & H2, H). On the contrary, the diagrams related to lengths show downward curvature. These two diagrams take the form of a convex lens in the upper section. Besides, the two diagrams cross each other in the lower section. The overall shape formed by the above two diagrams between three planes($H^{\prime}{\rightarrow}G^{\prime}{\rightarrow}R^{\prime}$) and three rock cleavages($R{\rightarrow}G{\rightarrow}H$) display in reverse order. Lastly, these types of correlation analysis is useful for discriminating three quarrying planes.

Simulation on the Distribution of Vanadium- and Iron-Picolinate Complexes in the Decontamination Waste Solution (제염 폐액에서 바나듐- 및 철-피콜리네이트 착화물의 평형분배 모사)

  • Shim, Joon-Bo;Oh, Won-Zin;Kim, Jong-Duk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • The distribution of vanadium and iron ionic species in the presence of picolinate ligand has been simulated at various conditions with different pH values and compositions in the decontamination waste solution. In spite of variations of metal concentration in the decontamination solution, the shape of distribution diagrams were not changed greatly at both high (the molar ratio of picolinate to vanadium is 6) and low (the molar ratio is 3) LOMI decontamination conditions. However, in the solution of low-picolinate condition the shape of the distribution diagram of iron(II)-picolinate complexes was changed significantly. This phenomenon is attributed to the shortage of relative amount of picolinate ligand to iron existed in the solution, and originated from the difference in stability constants for complexes formed between vanadium(III) and iron(II) species with picolinate ligand. The distribution diagrams obtained in this study can be applied very usefully to the prediction or understanding the reaction phenomena occurred at various conditions in the course of the LOMI waste treatments such as an ion exchange operation.

RADIAL COLOR GRADIENT IN A GLOBULAR CLUSTER 1. M68

  • Yi, Su-Kyoung;Chun, Mun-Suk
    • Journal of Astronomy and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.105-111
    • /
    • 1990
  • Stars in M 68 from the observed-magnitude diagrams with CCD were integrated to find any radial gradient. The result shows that M 68 has a slightly bluer core. The main cause of these calculated radial color variations seems to come from the random distribution of ginants.

  • PDF

Metallogenesis and Petrology of the Gwangyang Gold Deposits and Goheung Copper Deposits (광양금광상(光陽金鑛床), 고흥동광상(高興銅鑛床)의 광상생성(鑛床生成)과 암석학적(岩石學的) 연구(硏究))

  • Park, Young Surk;Shin, Byung Woo
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.91-100
    • /
    • 1984
  • The Gwangyang gold deposits geologically consist of granitic gneiss, metatectic gneiss and porphyroblastic gneiss which correspond to Jirisan gneiss complex. The formations of Gyeongsang system lies unconformably on these gneisses and are intruded by diorite, porphyritic andesite and Bulgugsa granites. Goheung districts are composed of quartz schist, andesitic rock, tuff and granite. The Gwangyang gold deposits are gold bearing fissure filling veins. The vein thickness varies from 15cm to 40cm and they consist of 7-10 layers in parallel. The Goheung copper deposits are sulphide bearing quartz veln which filled the fracture in andesitic rock and biotite granite. The contact zone of these rocks is partially altered. The mineral paragenesis of the Gwangyang and Goheung districts is pyrite, arsenopyrite, pyrrhotite, chalcopyrite, sphalerite, galena, sericite, quartz and calcite. The variation trends of FMA and A'KF triangular diagrams and the differentiation index (norm, Q + Or + Ab) versus oxides diagrams is similar to the Gyeonsang basin igneous rocks. From the trace element analysis of 10 samples of country rocks, wall rocks and veins, the distribution of copper and lead contents display a correlative distribution pattern in relation to gold and silver. Homogenization temperature of fluid inclusions range from $200^{\circ}C$ to $270^{\circ}C$ in quartz from the Gwangyang gold vein and the size of fluid inclusion range from 0.01mm to 0.04mm. The fluid inclusions are mainly one or two phase and the filling degree of the inclusions varies from 85 to 95.

  • PDF

MODEL DUST ENVELOPES FOR ASYMPTOTIC GIANT BRANCH STARS. II. CARBON STARS

  • Suh, Kyung-Won;Kwoun, Hee-Joung
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.168-178
    • /
    • 1995
  • We have modeled the dust envelopes around carbon stars with close attention to the evolution of the structure of the dust shells. We use various dust density distributions to take account the effect of the superwind due to the helium shell flash by adding a density increased region. Depending on the position and quality of the density increased region, the model results are different from the results with conventional density distribution. The new results fit the observations of some carbon stars better. The IR two-color diagrams comparing the results of the super wind models and IRAS observation of 252 carbon stars have been made. The new results can explain much wider regions on the IR two-color diagrams.

  • PDF

MODEL DUST ENVELOPES FOR ASYMPTOTIC GIANT BRANCH STARS. I. OH/IR STARS

  • Suh, Kyung-Won
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.157-167
    • /
    • 1995
  • OH/IR stars are the most massive and youngest subclass in asymptotic giant branch stars which pass through sporadic superwind phases. We have modeled the dust envelopes around OH/IR stars with close attention to the evolution of the structure of the dust shells. We use various dust density distributions to take account the effect of the superwind due to the helium shell flash by adding a density increased region. Depending on the position and quality of the density increased region, the model results are different from the results with conventional density distribution. The new results fit the observations of some OH/IR stars better. Especially, the OH/IR stars with excessive 30-100$\mu$m emission can be better explained by the new results. The IR two-color diagrams comparing the results of the superwind models and IRAS observation of 95 OH/IR stars have been made. The new results can explain much wider regions on the IR two-color diagrams.

  • PDF

Evaluation for Rock Cleavage Using Distribution of Microcrack Spacings (I) (미세균열의 간격 분포를 이용한 결의 평가(I))

  • Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.13-27
    • /
    • 2016
  • The characteristics of the rock cleavage inherent in Jurassic granite from Geochang were analysed. The phases of distribution of microcrack spacings were derived from the enlarged photomicrographs(${\times}6.7$) of the thin section. The evaluation for the six directions of rock cleavages was performed using nine parameters such as (1) frequency of microcrack spacing(N), (2) frequency ratio(${\leq}1mm$ and 4 mm >) to total spacing frequency(N:191), (3) spacing ratio(${\leq}1mm$) to total spacing(118.49 mm), (4) mean spacing($S_{mean}$), (5) difference value($S_{mean}-S_{median}$) between mean spacing and median spacing($S_{median}$), (6) density of spacing, (7) median spacing, (8) reduction ratio of spacing frequency to length frequency and (9) magnitude of exponent(${\lambda}$ and b) related to the distribution type of diagram. Especially the close dependence between the above spacing parameters and the parameters from the spacing-cumulative frequency diagrams was derived. The results of correlation analysis between the values of parameters for three rock cleavages and those for three planes are as follows. The values of (I) parameters(1, 2 and 3), (II) parameters(4, 5 and 6), (III) parameter(7), (IV) parameter(8) and (V) parameter(9) show the various orders of H(hardway, H1+H2) < G(grain, G1+G2) < R(rift, R1+R2), R < G < H, R < H < G, G < H < R and H < G < R, respectively. On the contrary, the values of the above four groups(I~IV) of parameters for three planes show reverse orders. This type of correlation analysis is useful for discriminating three quarrying planes. Six spacing-cumulative frequency diagrams were arranged in increasing order on the value of main parameter($S_{mean}-S_{median}$). These diagrams show an order of R2 < R1 < G2 < G1 < H2 < H1 from the related chart. In other words, the above six diagrams can be summarized in order of rift(R1+R2) < grain(G1+G2) < hardway(H1+H2). These results indicate a relative magnitude of rock cleavage related to microcrack spacing. Especially, the above main parameter could provide advanced information for prediction the order of arrangement among the diagrams.