• Title/Summary/Keyword: Distribution Department

Search Result 23,864, Processing Time 0.047 seconds

A PHOTOELASTIC ANALYSIS OF STRESS DISTRIBUTIONS AROUND FIVE DIFFERENT TYPES OF ENDOSSEOUS IMPLANTS ACCORDING TO THEIR STRUCTURES (5종 골내 임플란트의 구조에 따른 주위의 응력분산에 관한 광탄성학적 연구)

  • Lee Jeong-Nam;Cho Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.4
    • /
    • pp.643-659
    • /
    • 1993
  • This study was performed for the purpose of evaluating the stress distributions around five different types of implants according to their structures. The stress distribution around the surrounding bone was analysed by two-dimensional photoelastic method. Five epoxy resin models were made, and vertical and lateral forces were applied to the models. A circular polariscope was used to record the isochromatic fringes. The results of this study were summerized as follows : 1. Threaded type implants showed more even stress distribution patterns than cylinderical type implants when vertical and lateral forces were applied. 2. The stress concentrated patterns were observed at the neck portion and middle portion of the cylindrical type implants comparing with threaded type implants when vertical force was applied. 3. Model 1 and model 4 which are tthreaded type implants showed similar stress distribution patterns at the middle and apical portions and more stress was concentrated at the neck porion of model 1 comparing with model 4 when vertical force was applied. The stresses around model 1 were more evenly distributed when lateral force was applied. 4. More stress was concentrated at the neck and middle portion of cylindrical type implants than threaded type implants when lateral force was applied. 5. Model 1 showed the most even stress distribution patterns when lateral force was applied and stress distribution did no occured at the apical portion of modedl 2 when lateral force was applied. 6. There were almost no differences in stress concentrated patterns with or without having hollow design. And the stress concentrated patterns were observed at the corner of apex in model 5 which has hollow design when vertical force was applied.

  • PDF

Synthesis of scheelite-type nanocolloidal particles by pulsed laser ablation in liquid and their size distribution analysis

  • Lee, Jung-Il;Shim, Kwang Bo;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.111-119
    • /
    • 2014
  • A novel pulsed laser ablation process in liquid was investigated to prepare scheelite-type ceramic [calcium tungstate ($CaWO_4$) and calcium molybdate ($CaMoO_4$)] nanocolloidal particles. The crystalline phase, particle morphology, particle size distribution, absorbance and optical band-gap were investigated. Stable colloidal suspensions consisting of well-dispersed $CaWO_4$ and $CaMoO_4$ nanoparticles with narrow size distribution could be obtained without any surfactant. Particle tracking analysis using optical microscope combined with image analysis was applied for a fast determination of particle size distribution in the prepared nanocolloidal suspensions. The mean nanoparticle size of $CaWO_4$ and $CaMoO_4$ colloidal nanoparticles were 16 nm and 30 nm, with the standard deviations of 2.1 and 5.2 nm, respectively. The optical absorption edges showed blue-shifted values about 60~70 nm than those of reported in bulk crystals. And also, the estimated optical energy band-gaps of $CaWO_4$ and $CaMoO_4$ colloidal particles were 5.2 and 4.7 eV. The observed band-gap widening and blue-shift of the optical absorbance could be ascribed to the quantum confinement effect due to the very small size of the $CaWO_4$ and $CaMoO_4$ nanocolloidal particles prepared by pulsed laser ablation in liquid.

THREE-DIMENSIONAL STRESS ANALYSIS OF IMPLANT SYSTEMS IN THE MANDIBULAR BONE WITH VARIOUS ABUTMENT TYPES AND LOADING CONDITIONS (임프란트의 상부구조물 형상과 하중조건에 따른 3차원 유한요소해석을 이용한 하악골의 응력분포에 관한 연구)

  • Shin Ha-Shik;Chun Heoung-Jae;Han Chong-Hyun;Lee Soo-Hong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.5
    • /
    • pp.617-625
    • /
    • 2003
  • Statement of problem : There are many studies focused on the effect of shape of futures on stress distribution in the mandibular bone. However, there are no studies focused on the effect of the abutment types on stress distribution in mandibular bone. Purpose : The purpose of this study is to investigate the effect of three different abutment types on the stress distributions in the mandibular bone due to various loads by performing finite element analysis. Material and method : Three different implant systems produced by Warantec (Seoul, Korea), were modeled to study the effect of abutment types on the stress distribution in the mandibular bone. The three implant systems are classified into oneplant (Oneplant, OP-TH-S11.5). internal implant (Inplant, IO-S11.5) and external implant (Hexplant, EH-S11.5). All abutments were made of titanium grade ELI. and all fixtures were made of titanium grade IV. The mandibular bone used in this study is constituted of compact and spongeous bone assumed to be homogeneous, isotropic and linearly elastic. A comparative study of stress distributions in the mandibular bone with three different types of abutment was conducted. Results : It was found that the types of abutments have significant influence on the stress distribution in the mandibular bone. It was due to difference in the load transfer mechanism and the size of contact area between abutment and fixture. Also the maximum effective stress in the mandibular bone was increased with the increase of inclination angle of load. Conclusion : It was concluded that the maximum effective stress in the bone by the internal implant was the lowest among the maximum effective stresses by other two types.

Geographical Distribution of Physician Manpower by Specialty and Care Level (의사인력의 지역별 분포 -전문과목과 진료수준을 중심으로-)

  • Yu, Seung-Hum;Jung, Sang-Hyuk;Cheon, Byung-Yool;Sohn, Tae-Yong;Oh, Hyohn-Joo
    • Journal of Preventive Medicine and Public Health
    • /
    • v.26 no.4 s.44
    • /
    • pp.661-671
    • /
    • 1993
  • In order to compare the geographical distribution of physician by level of medical care and specialty, a log linear model was applied to the annual registration data of the Korean Medical Association as of the end of December, 1991 which was supplemented from related institutions and adjusted with relevant sources. Those physicians in primary and secondary care institutions were not statistically significantly unevenly distributed by province-level catchment area. There were some differences in physician distribution among big cities, medium and small-sized cities, and counties; however, those physicians for primary care level were equitably distributed between cities and counties. Specialties for secondary care physicians were less evenly distributed in county areas than in city areas, and generalists are distributed more evenly in cities and counties than in big cities. There is a certain limitation due to underregistration in the annual physician registration to the Korean Medical Association; however, the geographical distribution of physicians has been improved quantitatively. It is strongly suggested that specialties and the level of medical care should be considered for further physician manpower studies.

  • PDF

Time-varying modeling of the composite LN-GPD (시간에 따라 변화하는 로그-정규분포와 파레토 합성 분포의 모형 추정)

  • Park, Sojin;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.109-122
    • /
    • 2018
  • The composite lognormal-generalized Pareto distribution (LN-GPD) is a mixture of right-truncated lognormal and GPD for a given threshold value. Scollnik (Scandinavian Actuarial Journal, 2007, 20-33, 2007) shows that the composite LN-GPD is adequate to describe body distribution and heavy-tailedness. This paper considers time-varying modeling of the LN-GPD based on local polynomial maximum likelihood estimation. Time-varying model provides significant detailed information of time dependent data, hence it can be applied to disciplines such as service engineering for staffing and resources management. Our work also extends to Beirlant and Goegebeur (Journal of Multivariate Analysis, 89, 97-118, 2004) in the sense of losing no data by including truncated lognormal distribution. Our proposed method is shown to perform adequately in simulation. Real data application to the service time of the Israel bank call center shows interesting findings on the staffing policy.

Permutation-Based Test with Small Samples for Detecting Differentially Expressed Genes (극소수 샘플에서 유의발현 유전자 탐색에 사용되는 순열에 근거한 검정법)

  • Lee, Ju-Hyoung;Song, Hae-Hiang
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.1059-1072
    • /
    • 2009
  • In the analysis of microarray data with a small number of arrays, the most important task is the detection of differentially expressed genes by a significance test. For this purpose, one needs to construct a null distribution based on a large number of genes and one of the best way for constructing the null distribution for a small number of arrays is by means of permutation methods. In this paper we propose simple test statistics and permutation methods that are appropriate in constructing the null distribution. In a simulation study, we compare the null distributions generated by the proposed test statistics and permutation methods with the previous ones. With an example microarray data, differentially expressed genes are determined by applying these methods.

A comparative study on learning effects based on the reliability model depending on Makeham distribution (Makeham분포에 의존한 신뢰성모형에 근거한 학습효과 특성에 관한 비교 연구)

  • Kim, Hee-Cheul;Cheul, Shin-Hyun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.5
    • /
    • pp.496-502
    • /
    • 2016
  • In this study, we investigated the comparative NHPP software model based on learning techniques that operators in the process of software testing and development of software products that can be applied to software test tool. The life distribution was applied Makeham distribution based on finite fault NHPP. Software error detection techniques known in advance, but influencing factors for considering the errors found automatically and learning factors, by prior experience, to find precisely the error factor setting up the testing manager are presented comparing the problem. As a result, the learning factor is larger than automatic error that is usually well-organized model could be established. This paper, a trust characterization of applying using time among failures and parameter approximation using maximum likelihood estimation, after the effectiveness of the data through trend examination model selection were well-organized using the mean square error and $R^2$. From this paper, the software operators must be considered life distribution by the basic knowledge of the software to confirm failure modes which may be helped.

A study on MERS-CoV outbreak in Korea using Bayesian negative binomial branching processes (베이지안 음이항 분기과정을 이용한 한국 메르스 발생 연구)

  • Park, Yuha;Choi, Ilsu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.1
    • /
    • pp.153-161
    • /
    • 2017
  • Branching processes which is used for epidemic dispersion as stochastic process model have advantages to estimate parameters by real data. We have to estimate both mean and dispersion parameter in order to use the negative binomial distribution as an offspring distribution on branching processes. In existing studies on biology and epidemiology, it is estimated using maximum-likelihood methods. However, for most of epidemic data, it is hard to get the best precision of maximum-likelihood estimator. We suggest a Bayesian inference that have good properties of statistics for small-sample. After estimating dispersion parameter we modelled the posterior distribution for 2015 Korea MERS cases. As the result, we found that the estimated dispersion parameter is relatively stable no matter how we assume prior distribution. We also computed extinction probabilities on branching processes using estimated dispersion parameters.

Spatial Distribution Characteristics of Fashion Industries and the Interrelationships among Functional Sectors of Fashion Production in the Seoul Metropolitan Area (패션제조업의 분포 특성과 직능 간 연계성 분석)

  • Yoo, Ji Yeon;Lee, Keumsook
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.1-16
    • /
    • 2013
  • This study investigates the spatial distribution characteristics of Korean fashion industries during the last decade, in which the economic geography of fashion industries has changed dynamically with economic globalization and "thus resulted in increased" demand "of" diversification. In particular, this study examines the spatial distribution patterns of fashion industries in the Seoul metropolitan area where fashion industries are highly agglomerated. For the purpose, this study applies Moran's I Index of spatial autocorrelation analysis for seven functional sectors of fashion industries related to fashion production. The global and local agglomeration patterns are examined for each functional sector. The results clarify the distinction in the spatial agglomeration patterns among the seven functional sectors of fashion industries in the Seoul Metropolitan area. Logit models are developed to examine the interrelationships among functional sectors in their spatial agglomeration distribution patterns. By conducting binary logistic regression analysis, we find out how the spatial agglomeration of each functional sector is related to the others.

  • PDF

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.