• Title/Summary/Keyword: Distribution Channel System

Search Result 505, Processing Time 0.023 seconds

Estimation of Spatial Accumulation and transportation of Chl-$\alpha$ by the Numerical Modeling in Red Tide of Chinhae Bay (진해만 적조에 있어서 수치모델링에 의한 Chl-$\alpha$의 공간적 집적과 확산 평가)

  • Lee Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • The summer distribution of $Cha-{alpha}$ and physical processes for simulating outbreak region of red tide were estimated by the Eco-Hydrodynamic model in Chinhae Bay. As a result of simulation of surface residual currents, the southward flow come in contact with the northward flow at the inlet and western part of bay in case of windlessness and below wind velocity 2 m/sec. As wind velocity increases, the velocity and direction of currents were fairly shifted. The predicted concentration of $Cha-{alpha}$ exceeded 20 mg/㎥ in Masan and Haengam Bays, and most regions were over 10 mg/㎥, which meant the possibility of red tide outbreak. From the results of the contributed physical processes to $Cha-{alpha}$, accumulation sites were distributed at the northern part of Kadok channel, around the Chilcheon island, the western part of Kajo island and some area of Chindong Bay. On the other hand, inner parts of the study area such as Masan Bay were estimated as the sites of strong algal activities. Masan and Haengam Bay are considered as the initial outbreak region of red tide by the modeling and observed data, and then red tide expanded to other areas such as physical accumulation region and western inner bay, as depending on environmental variation. The increase of wind velocity led to decrease of $Cha-{alpha}$ and enlargement of accumulation region. The variation of intensity of radiation and sunshine duration caused to rapidly fluctuation of $Cha-{alpha}$: however, it was not largely affected by the variation of pollutant loads from the land only.

  • PDF

Application of SP Monitoring in the Pohang Geothermal Field (포항 지열 개발지역에서의 SP 장기 관측)

  • Lim Seong Keun;Lee Tae Jong;Song Yoonho;Song Sung-Ho;Yasukawa Kasumi;Cho Byong Wook;Song Young Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.164-173
    • /
    • 2004
  • To delineate geothermal water movement at the Pohang geothermal development site, Self-Potential (SP) survey and monitoring were carried out during pumping tests. Before drilling, background SP data have been gathered to figure out overall potential distribution of the site. The pumping test was performed in two separate periods: 24 hours in December 2003 and 72 hours in March 2004. SP monitoring started several days before the pumping tests with a 128-channel automatic recording system. The background SP survey showed a clear positive anomaly at the northern part of the boreholes, which may be interpreted as an up-flow Bone of the deep geothermal water due to electrokinetic potential generated by hydrothermal circulation. The first and second SP monitoring during the pumping tests performed to figure out the fluid flow in the geothermal reservoir but it was not easy to see clear variations of SP due to pumping and pumping stop. Since the area is covered by some 360 m-thick tertiary sediments with very low electrical resistivity (less than 10 ohm-m), the electrokinetic potential due to deep groundwater flow resulted in being seriously attenuated on the surface. However, when we compared the variation of SP with that of groundwater level and temperature of pumping water, we could identify some areas responsible to the pumping. Dominant SP changes are observed in the south-west part of the boreholes during both the preliminary and long-term pumping periods, where 3-D magnetotelluric survey showed low-resistivity anomaly at the depth of $600m\~1,000m$. Overall analysis suggests that there exist hydraulic connection through the southwestern part to the pumping well.

Intents of Acquisitions in Information Technology Industrie (정보기술 산업에서의 인수 유형별 인수 의도 분석)

  • Cho, Wooje;Chang, Young Bong;Kwon, Youngok
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.123-138
    • /
    • 2016
  • This study investigates intents of acquisitions in information technology industries. Mergers and acquisitions are a strategic decision at corporate-level and have been an important tool for a firm to grow. Plenty of firms in information technology industries have acquired startups to increase production efficiency, expand customer base, or improve quality over the last decades. For example, Google has made about 200 acquisitions since 2001, Cisco has acquired about 210 firms since 1993, Oracle has made about 125 acquisitions since 1994, and Microsoft has acquired about 200 firms since 1987. Although there have been many existing papers that theoretically study intents or motivations of acquisitions, there are limited papers that empirically investigate them mainly because it is challenging to measure and quantify intents of M&As. This study examines the intent of acquisitions by measuring specific intents for M&A transactions. Using our measures of acquisition intents, we compare the intents by four acquisition types: (1) the acquisition where a hardware firm acquires a hardware firm, (2) the acquisition where a hardware firm acquires a software/IT service firm, (3) the acquisition where a software/IT service firm acquires a hardware firm, and (4) the acquisition where a software /IT service firm acquires a software/IT service firm. We presume that there are difference in reasons why a hardware firm acquires another hardware firm, why a hardware firm acquires a software firm, why a software/IT service firm acquires a hardware firm, and why a software/IT service firm acquires another software/IT service firm. Using data of the M&As in US IT industries, we identified major intents of the M&As. The acquisition intents are identified based on the press release of M&A announcements and measured with four categories. First, an acquirer may have intents of cost saving in operations by sharing common resources between the acquirer and the target. The cost saving can accrue from economies of scope and scale. Second, an acquirer may have intents of product enhancement/development. Knowledge and skills transferred from the target may enable the acquirer to enhance the product quality or to expand product lines. Third, an acquirer may have intents of gain additional customer base to expand the market, to penetrate the market, or to enter a foreign market. Fourth, a firm may acquire a target with intents of expanding customer channels. By complementing existing channel to the customer, the firm can increase its revenue. Our results show that acquirers have had intents of cost saving more in acquisitions between hardware companies than in acquisitions between software companies. Hardware firms are more likely to acquire with intents of product enhancement or development than software firms. Overall, the intent of product enhancement/development is the most frequent intent in all of the four acquisition types, and the intent of customer base expansion is the second. We also analyze our data with the classification of production-side intents and customer-side intents, which is based on activities of the value chain of a firm. Intents of cost saving operations and those of product enhancement/development can be viewed as production-side intents and intents of customer base expansion and those of expanding customer channels can be viewed as customer-side intents. Our analysis shows that the ratio between the number of customer-side intents and that of production-side intents is higher in acquisitions where a software firm is an acquirer than in the acquisitions where a hardware firm is an acquirer. This study can contribute to IS literature. First, this study provides insights in understanding M&As in IT industries by answering for question of why an IT firm intends to another IT firm. Second, this study also provides distribution of acquisition intents for acquisition types.

A Study of the Supply of Large Korean Pine Timber (국산 육송 특대재 수급 현황 분석 및 문화재 수리의 활용에 관한 연구)

  • Jung, Younghun;Yun, Hyundo
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.136-149
    • /
    • 2020
  • It is generally believed that Douglas Fir timber imported from North America is used in repair work for Korean wooden heritage sites due to an insufficient supply of extra-large sized Korean pine timber. Based on this understanding in the cultural heritage repair field, Cultural Heritage Repair Business Entities ("CHRBE") prefer North American Douglas Fir timber which is more easily acquired on the market than large Korean pine timber. However, if CHRBE use large quantities of foreign-origin wood in the heritage repair field, this presents the threat of negative domestic impacts on cultural heritage such as breaching the preservation principal and ultimately weakening material authenticity. Therefore, this study aims to investigate the current supply status of large Korean pine timber through examination of existing research, interviews with experts engaged in CHRBE, and timber mills. With this information, the authors seek to identify whether the market supply of large Korean pine timber is indeed insufficient or not. In addition to this, this paper identifies the reasons why large Korean pine timber is not widely used if such timber supply is actually sufficient. In order to propose suggestions regarding the issues above, the authors study the distribution channel for large Korean pine timber and the price spectrum of this timber through examination of price information from the public agencies under the Korea Forest Service, research papers from the Cultural Heritage Administration, and estimation documents from timber mills. This paper also identifies two main opinions about why Korean timber has not been commonly used in the Korean heritage repair field. The first opinion is that the supply of large Korean pine timber really is insufficient in Korea. However, the second opinion is that it is hardly used due to inappropriateness of the government's procurement and estimation system, despite the fact that the supply of the timbers on the market is actually sufficient. Through the aforementioned research, this paper comes to the conclusion that the second opinion has strong grounds in many aspects. In terms of suggestions, alternative routes are proposed to stimulate the use of large Korean pine timber via supply by the 'Korea Foundation for Traditional Architecture and Technology' and surveys of the price spectrum of the timber, etc.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.