• 제목/요약/키워드: Distributed rainfall-runoff model

검색결과 179건 처리시간 0.22초

Sensitivity Analysis and Parameter Evaluation of a Distributed Model for Rainfall-Runoff-Soil Erosion-Sediment Transport Modeling in the Naesung Stream Watershed (내성천 유역의 강우-유출-토양침식-유사이송 모의를 위한 분포형 모형의 민감도 분석 및 매개변수 평가)

  • Jeong, Won Jun;Ji, Un
    • Journal of Korea Water Resources Association
    • /
    • 제47권12호
    • /
    • pp.1121-1134
    • /
    • 2014
  • The distributed watershed model of rainfall-runoff-soil erosion-sedimen transport was constructed for the Naesung Stream Watershed with high potentiality and risk of sediments produced by soil erosion. The sensitivity analyses of roughness coefficient and hydraulic conductivity which affected the modeling results of runoff and sediment concentration were performed in this study. As a result, the change of the roughness coefficient for the forest area from 0.4 to 0.45 did not affect the change in runoff and stream discharge and the average value and range of sediment concentration were also insignificantly increased with few difference. As a result of the sensitivity analysis of the hydraulic conductivity, the total amount of runoff and maximum runoff were gradually increased as the hydraulic conductivity was reduced. In the case of sediment concentration modeling, the average and the range of sediment concentration for all stations were increased as the hydraulic conductivity was decreased. For the Hyangseok Station, in case of the hydraulic conductivity reduced by 50%, the simulation result of sediment concentration was most similar to the estimated value by the sediment rating curve.

The Selection of Optimal Distributions for Distributed Hydrological Models using Multi-criteria Calibration Techniques (다중최적화기법을 이용한 분포형 수문모형의 최적 분포형 선택)

  • Kim, Yonsoo;Kim, Taegyun
    • Journal of Wetlands Research
    • /
    • 제22권1호
    • /
    • pp.15-23
    • /
    • 2020
  • The purpose of this study is to investigate how the degree of distribution influences the calibration of snow and runoff in distributed hydrological models using a multi-criteria calibration method. The Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) developed by NOAA-National Weather Service (NWS) is employed to estimate optimized parameter sets. We have 3 scenarios depended on the model complexity for estimating best parameter sets: Lumped, Semi-Distributed, and Fully-Distributed. For the case study, the Durango River Basin, Colorado is selected as a study basin to consider both snow and water balance components. This study basin is in the mountainous western U.S. area and consists of 108 Hydrologic Rainfall Analysis Project (HRAP) grid cells. 5 and 13 parameters of snow and water balance models are calibrated with the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm. Model calibration and validation are conducted on 4km HRAP grids with 5 years (2001-2005) meteorological data and observations. Through case study, we show that snow and streamflow simulations are improved with multiple criteria calibrations without considering model complexity. In particular, we confirm that semi- and fully distributed models are better performances than those of lumped model. In case of lumped model, the Root Mean Square Error (RMSE) values improve by 35% on snow average and 42% on runoff from a priori parameter set through multi-criteria calibrations. On the other hand, the RMSE values are improved by 40% and 43% for snow and runoff on semi- and fully-distributed models.

Application of K-DRUM Model for Pakistan Kunhar River Basin Considering Long-term Snow Melt and Cover (장기 융·적설을 고려한 파키스탄 Kunhar강 유역 K-DRUM모형 구축 및 적용)

  • Park, Jin Hyeog;Hur, Young Teck;Noh, Joon Woo;Kim, Seo-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제33권6호
    • /
    • pp.2237-2244
    • /
    • 2013
  • In this study, physics based K-DRUM(K-water Distributed RUnoff Model) using GIS spatial hydrologic data as input data was developed to account for the temperature variation according to the altitude change considering snow melt and cover. The model was applied for Pakistan Kunhar River Basin($2,500km^2$) to calculate long-term discharge considering snow melt and cover. Time series analysis of the temperature and rainfall data reveals that temperature and rainfall of the river basin differs significantly according to altitude change compared to domestic basin. Thus, applying temperature and altitude lapse rate during generate input data generation. As a result, calculated discharge shows good agreement with observed ones considering snow melt and accumulation characteristic which has the difference of 4,000 meter elevation above sea level. In addition, the simulated discharge strongly showed snow melting effect associated with temperature rise during the summer season.

Impact Assessment of Agricultural Reservoir on Streamflow Simulation Using Semi-distributed Hydrologic Model (준분포형 모형을 이용한 농업용 저수지가 안성천 유역의 유출모의에 미치는 영향 평가)

  • Kim, Bo Kyung;Kim, Byung Sik;Kwon, Hyun Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제29권1B호
    • /
    • pp.11-22
    • /
    • 2009
  • Long-term rainfall-runoff modeling is a key element in the Earth's hydrological cycle, and associated with many different aspects such as dam design, drought management, river management flow, reservoir management for water supply, water right permission or coordinate, water quality prediction. In this regard, hydrologists have used the hydrologic models for design criteria, water resources assessment, planning and management as a main tool. Most of rainfall-runoff studies, however, were not carefully performed in terms of considering reservoir effects. In particular, the downstream where is severely affected by reservoir was poorly dealt in modeling rainfall-runoff process. Moreover, the effects can considerably affect overall the rainfallrunoff process. An objective of this study, thus, is to evaluate the impact of reservoir operation on rainfall-runoff process. The proposed approach is applied to Anseong watershed, where is in a mixed rural/urban setting of the area and in Korea, and has been experienced by flood damage due to heavy rainfall. It has been greatly paid attention to the agricultural reservoirs in terms of flood protection in Korea. To further investigate the reservoir effects, a comprehensive assessment for the results are discussed. Results of simulations that included reservoir in the model showed the effect of storage appeared in spring and autumn when rainfall was not concentrated. In periods of heavy rainfall, however, downstream runoff increased in simulations that do not consider reservoir factor. Flow duration curve showed that changes in streamflow depending upon the presence or absence of reservoir factor were particularly noticeable in ninety-five day flow and low flow.

Simulation of Moving Storm in a Watershed Using A Distributed Model(II)-Model Application- (분포형 모델을 이용한 유역내 이동강우의 유출해석(II)-모델의 적용-)

  • Choe, Gye-Un;Lee, Hui-Seung;An, Sang-Jin
    • Water for future
    • /
    • 제26권1호
    • /
    • pp.81-91
    • /
    • 1993
  • In this paper, a moving storm in the real watershed was simulated using a distributed model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm of August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity of the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetative cover percentages, overland plane slopes, channel bed slopes and so on, are spatially varied. The model developed in the previous paper was utilized as a distributed model for simulating the moving storm. In the model, runoff in a watershed was simulated as two parts which are overland flow and channel flow parts. The good agreement was obtained between a simulated hydrograph using a distributed model and an observed hydrograph. Also, the conservations of mass are well indicated between upstream and downstream at channel junctions.

  • PDF

Assessment of the Effect of Geographic Factors and Rainfall on Erosion and Deposition (지형학적 인자 및 강우량에 따른 침식 및 퇴적의 영향 평가)

  • Yu, Wan-Sik;Lee, Gi-Ha;Jung, Kwan-Sue
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제11권2호
    • /
    • pp.103-112
    • /
    • 2011
  • This study aims to demonstrate the relationship between various factors and soil erosion or deposition, simulated from distributed rainfall-sediment-runoff model applications. We selected area, overland flow length, local slope as catchment representative characteristics among many important geographic factors and also used the grid-based accumulated rainfall as a representative hydro-climatic factor to assess the effect of these two different types of factors on erosion and deposition. The study catchment was divided based on the Strahler's stream order method for analysis of the relationship between area and erosion or deposition. Both erosion and deposition increased linearly as the catchment area became larger. Erosion occurred widely throughout the catchment, whereas deposition was observed at the grid-cells near the channel network with short overland flow lengths and mild slopes. In addition, the relationship results between grid-based accumulated rainfall and soil erosion or deposition showed that erosion increased gradually as rainfall amount increased, whereas deposition responded irregularly to variations in rainfall. Within the context of these results, it can be concluded that deposition is closely related with the geographic factors used in this study while erosion is significantly affected by rainfall.

Study on the Numerical Simulation of Debris Flow due to Heavy Rainfall (집중 강우에 따른 토석류 유출의 수치계산)

  • Kim, Jung-Han;Min, Sun-Hong;Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • 제17권3호
    • /
    • pp.389-395
    • /
    • 2009
  • In spite of many numerical analysis of debris flow, a little information has been found out. In this paper the watershed is divided to apply rainfall runoff and to estimate debris flow integrating flow and soil article. We use the contour data to extract spatially distributed topographical information like stream channels and networks of sub-basins. A Quasi Digital Elevation Model (Q-DEM) is developed, integrated, and adopted to estimate runoff based on marked one. As a results, it has been found out that the debris flow was close to observed flow hydrograph. Because debris flow is finished in 30 second, it is important that we have to prepare its prior countermeasure to minimize the damage of debris flow. The GIS-linked model will provide effective information to plan river works for debris flow.

  • PDF

Water Balance and Pollutant Load Analyses according to LID Techniques for a Town Development (도시 개발 전·후 LID 기법 적용에 따른 물수지 및 오염부하 변동 특성)

  • Park, Ji-Young;Lim, Hyun-Man;Lee, Hae-In;Yoon, Young-Han;Oh, Hyun-Je;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제35권11호
    • /
    • pp.795-802
    • /
    • 2013
  • According to the increase of impervious area due to the town development, the rate of infiltration generally lessens and that of runoff rises during wet weather events. And it is concerned that its impacts on water quality for the downstream water bodies due to the change of rainfall runoff patterns may also increase. To cope with these issues, LID (Low Impact Development) techniques which try to maintain the characteristics of rainfall runoff regardless of the town development have been introduced actively. However, the behaviors of each LID technique for rainfall runoff and pollutant loads is not understood sufficiently. In this study, considering the applications of some LID techniques, several sets of simulations using a distributed rainfall runoff model, SWMM-LID, have been conducted for D town whose development is progressing. As the results of the simulations, the rates of infiltration/storage have been decreased from 78% in the case before the town development to 15% after the development and increased again by 24% with LID techniques such as porous pavement, rain barrel and rain garden. The rates of runoff have been increased more than three times from 20% in the case before the development to 74% after the development, and they have also been decreased to 66% by the adoption of LID techniques. It has been simulated that porous pavement is more effective than others in the view point of the reduction of runoff and rain barrel is more attractive for the management of pollutant loads (TSS, BOD, COD, T-N and T-P). Therefore, if some LID techniques should be selected for the a new town, it could be concluded that some techniques with better infiltration functions are recommendable for the control of runoff, and ones with larger storage functions for the management of pollutant loads.

Modified grid-based KIneMatic wave STOrm Runoff Model (ModKIMSTORM) (격자기반의 운동파 강우유출모형 KIMSTORM의 개선)

  • Jung, In-Kyun;Shin, Hyung-Jin;Park, Jin-Hyeog;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.254-258
    • /
    • 2008
  • 본 연구는 격자기반 운동파 강우유출모형 KIMSTORM(grid-based KIneMatic wave STOrm Runoff Model)의 기능을 개선하고 적용성을 평가하는 것이다. KIMSTORM은 김성준(1998)이 개발한 분포형 강우유출모형으로 포화상태의 지표흐름 및 토양수분상태의 시공간적인 분포를 파악할 수 있다. UNIX C++ 언어로 개발되었으며, GRASS 형태의 ASCII Grid를 입출력하도록 구성되어 있는 모형으로 UNIX 운영체제에서 구동이 가능하다. 그러나 UNIX와 GRASS는 최근에 많이 이용되지 않는 추세로 KIMSTORM 모형을 이용한 홍수유출해석이 적극적으로 활용되는데 주요 제약사항이 되어 왔다. 본 연구에서는 KIMSTORM을 윈도우즈 환경에서 운영될 수 있도록 FORTRAN 90을 이용하여 재개발하였으며 주요개선 사항으로, ESRI ASCII Grid 형태의 GIS(geographic information system) 자료 입력, 물리적 침투모의 방법인 GAML (Green-Ampt and Mein- Larson) 적용, 공간강우 입력가능, 정렬 알고리즘을 이용한 계산속도의 개선, 모형 자료입력 등 전처리 기능개선, 계산결과의 자동평가 및 분포도출력 등 후처리 방식개선으로 요약할 수 있다. 개선된 모형 GAML에 의한 침투방법을 적용하여, 남강댐유역($2,293\;km^2$)의 6개 강우사상을 대상으로 결정계수, Nash & Sutcliffe 모형효율계수, 용적편차, 첨두유량의 상대오차, 첨두시간의 절대오차를 이용하여 적용성을 평가하였으며, 민감도분석결과 초기토양수분조건과 하천조도계수가 가장 큰 민감도를 나타내었다.

  • PDF

Parameter Sensitivity Analysis of VfloTM Model In Jungnang basin (중랑천 유역에서의 VfloTM 모형의 매개변수 민감도 분석)

  • Kim, Byung Sik;Kim, Bo Kyung;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제29권6B호
    • /
    • pp.503-512
    • /
    • 2009
  • Watershed models, which are a tool for water cycle mechanism, are classified as the distributed model and the lumped model. Currently, the distributed models have been more widely used than lumped model for many researches and applications. The lumped model estimates the parameters in the conceptual and empirical sense, on the other hand, in the case of distributed model the first-guess value is estimated from the grid-based watershed characteristics and rainfall data. Therefore, the distributed model needs more detailed parameter adjustment in its calibration and also one should precisely understand the model parameters' characteristics and sensitivity. This study uses Jungnang basin as a study area and $Vflo^{TM}$ model, which is a physics-based distributed hydrologic model, is used to analyze its parameters' sensitivity. To begin with, 100 years frequency-design rainfall is derived from Huff's method for rainfall duration of 6 hours, then the discharge is simulated using the calibrated parameters of $Vflo^{TM}$ model. As a result, hydraulic conductivity and overland's roughness have an effect on runoff depth and peak discharge, respectively, while channel's roughness have influence on travel time and peak discharge.