• Title/Summary/Keyword: Distributed power generation system

Search Result 440, Processing Time 0.026 seconds

Power Quality Measurement Using TMS320C6701 Processor (TMS320C6701 프로세서를 이용한 전력 품질 측정)

  • Shin, Myong-Jun;Son, Young-Ik;Kim, Kab-Il
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.50-52
    • /
    • 2005
  • Research interests in PQ(Power Quality) measurement and monitoring system have been increased. This paper describes an experimental result for monitoring system that monitors power quality and undesirable accidents when distributed generations are connected to the power grid. Prior to develop a physical monitoring system for distributed generation applications, we constitute a mesuring system for the general PQ factors. In this paper, an approach to how to measure the PQ elements is presented by using TMS320C6701 processor. Simulation results using the PSCAD and the power system simulation equipment Dobel have verified the proposed measurement system.

  • PDF

Fuel Cell as an Alternative Distributed Generation Source under Deregulated Power System (규제가 없는 전력계통에서 대체분산형전원으로서의 연료전지)

  • Lee, Kwang-Y.;Kim, Se-Ho;Kim, Eel-Whan;Kim, Ho-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.331-332
    • /
    • 2006
  • This paper proposes the fuel cell power plants as alternative energy sources for distributed generation in Jeju Island, Korea. This will help to increase the fuel efficiency, at least double the current thermal power plants, decrease environmental pollution, virtually to none, increase the reliability of power supply, reducing the dependency of the HVDC link, and provide quality power to the growing infrastructure in meeting the requirements for the free-trade international island.

  • PDF

Study on the Oversea Technology Development of Electric Power Storage System and It's Domestic Application (전력저장시스템 기술개발 국외동향 분석 및 국내 활용방안 연구)

  • Choi, Kyung-Shik;Yang, Seung-Kwon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.57-60
    • /
    • 2008
  • As the technology of a large scale battery have advanced, it's application to the electric power network have been active in foreign country. By providing the electric power energy stored in the electric power storage system when needed, there are many advantages that it is able to reduce the gap between the electric power demand and supply for day and night to increase capacity factor, to upgrade the electric power quality degraded from the unbalance between power demand and supply and to compensate the fluctuation of wind power plant and photovoltaic power generation. In this study, the current application of electric power storage system using battery is introduced in detail, and I have thought out it's application fields based on the foreign examples. These are demand side response, upgrade of the power quality, stabilization of fluctuation of renewable energy and distributed generation for filling elapse.

  • PDF

Power Quality Improvement for Grid Connected Inverters under Distorted and Unbalanced Grids

  • Kim, Hyun-Sou;Kim, Jung-Su;Kim, Kyeong-Hwa
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1578-1586
    • /
    • 2016
  • A power quality improvement scheme for grid connected inverters, even in the presence of the disturbances in grid voltages due to harmonic distortions and three-phase imbalance, is presented for distributed generation (DG) power systems. The control objective is to force the inverter currents to follow their references with robustness even under external disturbances in grid voltages. The proposed scheme is realized by a disturbance observer (DOB) based current control scheme. Since the uncertainty in a system can be effectively canceled out using an estimated disturbance by the DOB, the resultant system behaves like a closed-loop system consisting of a disturbance-free nominal model. For experimental verification, a 2 kVA laboratory prototype of a grid connected inverter has been built using a digital signal processor (DSP) TMS320F28335. Through comparative simulations and experimental results under grid disturbances such as harmonic distortion and imbalance, the effectiveness of the proposed DOB based current control scheme is demonstrated.

An Operation and Control Algorithm of Micro-grid (차세대전력공급네트워크(Micro-grid)의 운용제어앨고리즘)

  • Rho, Dae-Seok;Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.232-239
    • /
    • 2007
  • There is an increasing concern to interconnect DG(Distributed Generation) units into a distribution system and operate and maintain the system power quality within a proper level to distribution companies, regional electricity utilities and industrial customers. Recently, this situation makes many experts estimate a next generation of distribution system which is composed of some micro-grids. But the proposed micro-grid is only mentioned as a small grid with some DG units, some power quality compensators, communication and control equipments. In this paper, a topology and an operation/control algorithm of the micro-grid which is able to supply the electricity with high reliability and quality, are proposed.

  • PDF

Study of Internet Web-Based Photovoltaic Inverter Remote Control System (인터넷 웹 기반 환경에서의 태양광용 인버터 원격제어시스템 개발에 관한 고찰)

  • Choi J. Y.;Cho K. S.;Choy I.;Yu G. J.;Jung Y. S.;Kim K. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.63-66
    • /
    • 2001
  • This paper aims at developing remote control system to control and monitor distributed various devices such as photovoltaic Inverter system through internet. TCP/IP (Transmission Control Protocol/Internet Protocol) and photovoltaic inverter system operated in a row are adopted for network management protocol and applied device, respectively. For controlling and monitoring distributed devices in real-time, java-environment software is constructed. Also, HelloDevice, general-use interface controller between network device and applied device is proposed. Finally, serial communication such as RS-232C is used between controller and applied device.

  • PDF

Calculation of the Area of Vulnerability to Voltage Sags by using Impedance Building Algorithm (임피던스 행렬 구성법을 이용한 순간전압강하 취약지역의 계산)

  • Park, Jong-Il;Park, Chang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • This paper presents a method to calculate the area of vulnerability by using the impedance building algorithm. The installation of DG (Distributed Generation) is one of the countermeasures against voltage sags in power systems. In order to estimate the effect of the DG, the voltage sag assessment should be performed based on the area of vulnerability and system fault statistics. To determine the area of vulnerability, system impedance matrix should be calculated. The calculation of the impedance matrix of large systems is time-consuming task. This paper addresses an effective scheme to calculate the area of vulnerability and system impedance matrix.

Modeling of Practical Photovoltaic Generation System using Controllable Current Source based Inverter (제어 가능한 전류원 기반의 인버터를 이용한 실제적 태양광 발전 시스템 모델링)

  • Oh, Yun-Sik;Cho, Kyu-Jung;Kim, Min-Sung;Kim, Ji-Soo;Kang, Sung-Bum;Kim, Chul-Hwan;Lee, You-Jin;Ko, Yun-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1340-1346
    • /
    • 2016
  • Utilization of Distributed Generations (DGs) using Renewable Energy Sources (RESs) has been constantly increasing as they provide a lot of environmental, economic merits. In spite of these merits, some problems with respect to voltage profile, protection and its coordination system due to reverse power flow could happen. In order to analyze and solve the problems, accurate modeling of DG systems should be preceded as a fundamental research task. In this paper, we present a PhotoVoltaic (PV) generation system which consists of practical PV cells with series and parallel resistor and an inverter for interconnection with a main distribution system. The inverter is based on controllable current source which is capable of controlling power factors, active and reactive powers within a certain limit related to amount of PV generation. To verify performance of the model, a distribution system based on actual data is modeled by using ElectroMagnetic Transient Program (EMTP) software. Computer simulations according to various conditions are also performed and it is shown from simulation results that the model presented is very effective to study DG-related researches.

An Optimal Installation Strategy for Allocating Energy Storage Systems and Probabilistic-Based Distributed Generation in Active Distribution Networks

  • Sattarpour, Tohid;Tousi, Behrouz
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.350-358
    • /
    • 2017
  • Recently, owing to increased interest in low-carbon energy supplies, renewable energy sources such as photovoltaics and wind turbines in distribution networks have received considerable attention for generating clean and unlimited energy. The presence of energy storage systems (ESSs) in the promising field of active distribution networks (ADNs) would have direct impact on power system problems such as encountered in probabilistic distributed generation (DG) model studies. Hence, the optimal procedure is offered herein, in which the simultaneous placement of an ESS, photovoltaic-based DG, and wind turbine-based DG in an ADN is taken into account. The main goal of this paper is to maximize the net present value of the loss reduction benefit by considering the price of electricity for each load state. The proposed framework consists of a scenario tree method for covering the existing uncertainties in the distribution network's load demand as well as DG. The collected results verify the considerable effect of concurrent installation of probabilistic DG models and an ESS in defining the optimum site of DG and the ESS and they demonstrate that the optimum operation of an ESS in the ADN is consequently related to the highest value of the loss reduction benefit in long-term planning as well. The results obtained are encouraging.

Efficiency Improvement for Building Integrated Photovoltaic Applied to High-rise Building (고층 빌딩에 적용되는 빌딩통합형 태양광패널 효율성 개선방안)

  • Lee, Do-Hyun;Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2022
  • With the advent of cutting-edge technology, renewable energy is significantly considered as alternative resources to supply electric power. However, many barriers such as energy intermittency, high initial installation cost, and low-efficiency generation challenged building new infrastructure with clean energy. Efforts reducing greenhouse gas emissions and reliance on fossil fuels resulted in the decentralization of power generation like distributed energy resource (DER). This paper is to introduce and evaluate the feasibility of building-integrated photovoltaics (BIPV) in a high-rise building in Ulsan. To optimize BIPV, a variety of methods to minimize efficiency decrease and maximize electric power generation after installing BIPV on the building's facade are suggested. The variables causing power losses are analyzed. By utilizing System Advisor Model (SAM), actual power generated from solar panels is measured by Thin-film PV, Mono-crystalline PV, and Poly-crystalline PV.