• 제목/요약/키워드: Distributed optical fiber sensor

Search Result 70, Processing Time 0.036 seconds

Fiber Optic Sensor for the Detection of Abnormal Structural Signals from Various Constructions (구조물 이상탐지용 광섬유 센서)

  • Kwon, Il-Bum;Lee, Youn-Jae;SeoMoon, Ung;Jo, Jae-Heung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.133-135
    • /
    • 2006
  • We propose and fabricate a novel fiber optic sensor for the detection of abnormal structural signals from various constructions. It's advantages are highly sensitive. small in dimension and electro-magnetic immune. Since this sensor was simply constructed with a single-mode fiber at infra-red wavelength and a laser-diode with the wavelength of 625 nm, the modes in the end of the optical fiber were not show as Gaussian distributed. So, we used the change of the mode distribution to get the sensor output by the external abnormal effect of structures. We investigated the resonance by performing the bending test of an aluminum beam attached with the fiber sensor. In the test, we could obtained a feasible signal to sense the abnormal condition of structures.

A Study on HVDC Underwater Cable Monitoring Technology Based on Distributed Fiber Optic Acoustic Sensors (분포형 광섬유 음향 센서 기반 HVDC 해저케이블 모니터링 기술 연구)

  • Youngkuk Choi;Hyoyoung Jung;Huioon Kim;Myoung Jin Kim;Hee-Woon Kang;Young Ho Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.199-206
    • /
    • 2023
  • This study presents a novel monitoring technique for underwater high-voltage direct current (HVDC) cables based on the Distributed Acoustic Sensor (DAS). The proposed technique utilizes vibration and acoustic signals generated on HVDC cables to monitor their condition and detect events such as earthquakes, shipments, tidal currents, and construction activities. To implement the monitoring system, a DAS based on phase-sensitive optical time-domain reflectometry (Φ-OTDR) system was designed, fabricated, and validated for performance. For the HVDC cable monitoring experiments, a testbed was constructed on land, mimicking the cable burial method and protective equipment used underwater. Defined various scenarios that could cause cable damage and conducted experiments accordingly. The developed DAS system achieved a maximum measurement distance of 50 km, a distance measurement interval of 2 m, and a measurement repetition rate of 1 kHz. Extensive experiments conducted on HVDC cables and protective facilities demonstrated the practical potential of the DAS system for monitoring underwater and underground areas.

Applications of BOTDR fiber optics to the monitoring of underground structures

  • Moffat, Ricardo A.;Beltran, Juan F.;Herrera, Ricardo
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.397-414
    • /
    • 2015
  • Three different applications for monitoring displacements in underground structures using a BOTDR-based distributed optical fiber strain sensing system are presented. These applications are related to the strain measurements of (1) instrumented PVC tube designed to be attached to tunnel side wall and ceiling as a sensor; (2) rock bolts for tunnels; and (3) shotcrete lining under loading. The effectiveness of using the proposed strain sensing system is evaluated by carrying out laboratory tests, in-situ measurements, and numerical simulations. The results obtained from this validation process provide confidence that the optical fiber is able to quantify strain fields under a variety of loading conditions and consequently use this information to estimate the behavior of rock mass during mining activity. As the measuring station can be located as far as 1 km of distance, these alternatives presented may increase the safety of the mine during mining process and for the personnel doing the measurements on the field.

Experimental investigations on detecting lateral buckling for subsea pipelines with distributed fiber optic sensors

  • Feng, Xin;Wu, Wenjing;Li, Xingyu;Zhang, Xiaowei;Zhou, Jing
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.245-258
    • /
    • 2015
  • A methodology based on distributed fiber optic sensors is proposed to detect the lateral buckling for subsea pipelines in this study. Uncontrolled buckling may lead to serious consequences for the structural integrity of a pipeline. A simple solution to this problem is to control the formation of lateral buckles among the pipeline. This firms the importance of monitoring the occurrence and evolution of pipeline buckling during the installation stage and long-term service cycle. This study reports the experimental investigations on a method for distributed detection of lateral buckling in subsea pipelines with Brillouin fiber optic sensor. The sensing scheme possesses the capability for monitoring the pipeline over the entire structure. The longitudinal strains are monitored by mounting the Brillouin optical time domain analysis (BOTDA) distributed sensors on the outer surface of the pipeline. Then the bending-induced strain is extracted to detect the occurrence and evolution of lateral buckling. Feasibility of the method was validated by using an experimental program on a small scale model pipe. The results demonstrate that the proposed approach is able to detect, in a distributed manner, the onset and progress of lateral buckling in pipelines. The methodology developed in this study provides a promising tool for assessing the structural integrity of subsea pipelines.

Novel Fiber Optic Microbend Sensor for the Measurement of Cable's Curvature (케이블의 곡률 측정을 위한 새로운 형태의 광섬유 마이크로벤드 센서 개발)

  • Oh, Sang-Woo;Choi, Hyeuk-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.289-295
    • /
    • 2009
  • In this paper the measurement method of cable's curvature using fiber optic microbend effect and its experimental results are presented. The novel structure of fiber optic microbender, which can generate microbend effect on the optical fiber in the case of both directional bending of cable, was designed. Through the experiment using suggested sensing system, the increasing trend of attenuated optical power was found out under the range from $0.1\;cm^{-1}$ to $0.4\;cm^{-1}$ of curvature. To the multi and distributed measurement, using OTDR, the scattered optical pulses at the bending points are measured and compared with the result which was measured by optical power meter.

  • PDF

Multi-fidelity Data-fusion for Improving Strain accuracy using Optical Fiber Sensors (이종 광섬유 센서 데이터 융합을 통한 변형률 정확도 향상 기법)

  • Park, Young-Soo;Jin, Seung-Seop;Yoo, Chul-Hwan;Kim, Sungtae;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.547-553
    • /
    • 2020
  • As aging infrastructures increase along with time, the efficient maintenance becomes more significant and accurate responses from the sensors are pre-requisite. Among various responses, strain is commonly used to detect damage such as crack and fatigue. Optical fiber sensor is one of the promising sensing techniques to measure strains with high-durability, immunity for electrical noise, long transmission distance. Fiber Bragg Grating (FBG) is a point sensor to measure the strain based on reflected signals from the grating, while Brillouin Optic Correlation Domain Analysis (BOCDA) is a distributed sensor to measure the strain along with the optical fiber based on scattering signals. Although the FBG provides the signal with high accuracy and reproducibility, the number of sensing points is limited. On the other hand, the BOCDA can measure a quasi-continuous strain along with the optical fiber. However, the measured signals from BOCDA have low accuracy and reproducibility. This paper proposed a multi-fidelity data-fusion method based on Gaussian Process Regression to improve the fidelity of the strain distribution by fusing the advantages of both systems. The proposed method was evaluated by laboratory test. The result shows that the proposed method is promising to improve the fidelity of the strain.

BOTDA based water-filling and preloading test of spiral case structure

  • Cui, Heliang;Zhang, Dan;Shi, Bin;Peng, Shusheng
    • Smart Structures and Systems
    • /
    • v.21 no.1
    • /
    • pp.27-35
    • /
    • 2018
  • In the water-filling and preloading test, the sensing cables were installed on the surface of steel spiral case and in the surrounding concrete to monitor the strain distribution of several cross-sections by using Brillouin Optical Time Domain Analysis (BOTDA), a kind of distributed optical fiber sensing (DOFS) technology. The average hoop strain of the spiral case was about $330{\mu}{\varepsilon}$ and $590{\mu}{\varepsilon}$ when the water-filling pressure in the spiral case was 2.6 MPa and 4.1 MPa. The difference between the measured and the calculated strain was only about $50{\mu}{\varepsilon}$. It was the first time that the stress adjustment of the spiral case was monitored by the sensing cable when the pressure was increased to 1 MPa and the residual strain of $20{\mu}{\varepsilon}$ was obtained after preloading. Meanwhile, the shrinkage of $70{\sim}100{\mu}{\varepsilon}$ of the surrounding concrete was effectively monitored during the depressurization. It is estimated that the width of the gap between the steel spiral case and the surrounding concrete was 0.51 ~ 0.75 mm. BOTDA based distributed optical fiber sensing technology can obtain continuous strain of the structure and it is more reliable than traditional point sensor. The strain distribution obtained by BOTDA provides strong support for the design and optimization of the spiral case structure.

A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring (온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구)

  • Kim, Jung-Yul;Song, Yoon-Ho;Kim, Yoo-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2007
  • Two kinds of temperature monitoring technology have been introduced in this study, which can measure coincidently temperatures at many points along a single length of cable. One is to use a thermal sensor cable comprizing of addressable thermal sensors. The other is to use an optic fiber sensor with Distributed Temperature Sensing (DTS) system. The differences between two technologies can be summarized as follows: A thermal sensor cable has a concept of "point sensing" that can measure temperature only at a predefined position. The accuracy and resolution of temperature measurement are up to the capability of the individual thermal sensor. On the other hand, an optic fiber sensor has a concept of "distributed sensing" because temperature is measured practically at all points along the fiber optic cable by analysing the intensity of Raman back-scattering when a laser pulse travels along the fiber. Thus, the temperature resolution depends on the measuring distance, measuring time and spatial resolution. The purpose of this study is to investigate the applicability of two different temperature monitoring techniques in technical and economical sense. To this end, diverse experiments with two techniques were performed and two techniques are applied under the same condition. Considering the results, the thermal sensor cable will be well applicable to the assessment of groundwater flow, geothermal distribution and grouting efficiency within about loom distance, and the optic fiber sensor will be suitable for long distance such as pipe line inspection, tunnel fire detection and power line monitoring etc.

Monitoring the Structural Behavior of Reinforced RC Slabs Using Optical Fiber-embedded CFRP Sheets (광섬유 매립 CFRP 시트를 활용한 RC 슬래브의 구조적 거동 모니터링 기술 개발)

  • Kim, Jaehwan;Jung, Kyu-San;Kim, Byeong-Cheol;Kim, Kun-Soo;Park, Ki-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.311-322
    • /
    • 2022
  • This study performed 4-point flexural tests of reinforced concrete to which was attached a distributed optical fiber sheet and carbon fiber reinforced polymer (CFRP) sheets in order to assess the effect of the CFRP sheets and the applicability of a BOTDR sensor simultaneously. To evaluate the reinforcing effect, various degrees of CFRP sheet attachment were manufactured, and to evaluate the sensing ability, strains obtained from a BOTDR sensor were compared with strains measured from electric resistance strain gauges that were attached to the concrete surface. From the results, the reinforcing effects were evidently different according to the attachment type of the CFRP sheets, and it was confirmed that the main influencing factor on the reinforcing effect was the type of attachment rather than the attachment area. The reinforced concrete structural behavior was visualized with strains measured from the BOTDR sensor as load increased, and it was identified that load was concentrated in the CFRP reinforced area. Strains from the BOTDR sensor were similar to those from the electric resistance strain gauge; thereby a BOTDR sensor can be effective in the analysis of structural behaviorsof massive infrastructure. Finally, the strain from a BOTDR sensor was high where CFRP sheet fall-off occurs, and it would therefore be efficient to track local damage locations of CFRP sheets by utilizing a BOTDR sensor.

Combustion Diagnostics Method Using Diode Laser Absorption Spectroscopy (다이오드 레이저를 이용한 연소진단기법)

  • Cha, Hak-Joo;Kim, Min-Soo;Shin, Myung-Chul;Kim, Se-Won;Kim, Hyuck-Joo;Han, Jae-Won
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.75-83
    • /
    • 2003
  • Diode laser absorption system is advantageous of their non-invasive nature, fast response time, high sensitivity and real-time measurement capability. Furthermore, recent advances in room-temperature, near-IR and visible diode laser sources for telecommunication, optical data storage applications are enabling combustion diagnostics system based on diode laser absorption spectroscopy. So, combined with fiber-optics and high sensitive detection strategies, compact and portable sensor system are now appearing for a variety of applications. The objective of this research is to take advantage of distributed feed-back diode laser and develope new gas sensing system. It experimentally found out that the wavelength, power characteristics as a function of injection current and temperature. In addition to direct absorption and wavelength modulation spectroscopy have been demonstrated in these experiments and have a bright prospect to this diode laser system.

  • PDF